Ta có: \(A=\left|2x-5\right|+\left|2x-7\right|=\left|2x-5\right|+\left|7-2x\right|\)
Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) có:
\(A=\left|2x-5\right|+\left|7-2x\right|\ge\left|2x-5+7-2x\right|=\left|2\right|=2\)
Dấu " = " khi \(\left\{{}\begin{matrix}2x-5\ge0\\7-2x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{5}{2}\\x\le\dfrac{7}{2}\end{matrix}\right.\)
Vậy \(MIN_A=2\) khi \(\dfrac{5}{2}\le x\le\dfrac{7}{2}\)