\(B=x^2+8x\)
\(B=x^2+8x+16-16\)
\(B=\left(x+4\right)^2-16\)
\(\left(x+4\right)^2\ge0\Rightarrow\left(x+4\right)^2-16\ge-16\)
Dấu "=" xảy ra khi:
\(\left(x+4\right)^2=0\Rightarrow x=-4\)
\(C-2x^2+8x-15\)
\(C=-2x^2+8x-8-7\)
\(C=-2\left(x^2-4x+4\right)-7\)
\(C=-2\left(x-2\right)^2-7\)
\(-2\left(x-2\right)^2\le0\Rightarrow-2\left(x-2\right)^2-7\le-7\)
Dấu "=" xảy ra khi:
\(-2\left(x-2\right)^2=0\Rightarrow x=2\)
\(A=x^2-4x+7\)
\(A=x^2-4x+4+3\)
\(A=\left(x-2\right)^2+3\)
\(\left(x-2\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-2\right)^2+3\ge3\)
Dấu "=" xảy ra khi:
\(\left(x-2\right)^2=0\Rightarrow x-2=0\Rightarrow x=2\)