Chương IV - Hàm số y = ax^2 (a khác 0). Phương trình bậc hai một ẩn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Dạ Thiên

Tìm giá trị lớn nhất của

M=\(\left(\sqrt{a}+\sqrt{b}\right)^2\)

Với a,b>0 và a+b\(\le\)1

Sinphuya Kimito
11 tháng 9 2023 lúc 9:30

Ta có: \(M=\left(\sqrt{a}+\sqrt{b}\right)^2\le\left(\sqrt{a}+\sqrt{b}\right)^2+\left(\sqrt{a}-\sqrt{b}\right)^2\)=\(2a+2b\le2\)

\(Max\)\(M=2\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{a}+\sqrt{b}\\a+b=1\end{matrix}\right.\)\(\Leftrightarrow a=b=\dfrac{1}{2}\)

Nguyễn Đức Trí
11 tháng 9 2023 lúc 10:37

\(M=\left(\sqrt[]{a}+\sqrt[]{b}\right)^2;a+b\le1\left(a;b>0\right)\)

Áp dụng Bất đẳng thức Bunhiacopxki cho 2 cặp số \(\left(1;\sqrt[]{a}\right);\left(1;\sqrt[]{b}\right)\)

\(M=\left(1.\sqrt[]{a}+1.\sqrt[]{b}\right)^2\le\left(1^2+1^2\right)\left(a+b\right)\le2\)  \(\left(a+b\le1\right)\)

\(\Rightarrow M=\left(\sqrt[]{a}+\sqrt[]{b}\right)^2\le2\)

Dấu "=" xảy ra khi và chỉ khi

\(\dfrac{1}{\sqrt[]{a}}=\dfrac{1}{\sqrt[]{b}}\Leftrightarrow a=b=1\)

\(\Rightarrow GTLN\left(M\right)=2\left(khi.a=b=1\right)\)

Nguyễn Đức Trí
11 tháng 9 2023 lúc 11:39

Đính chính \(a=b=\dfrac{1}{2}\)


Các câu hỏi tương tự
Nguyễn Châu Mỹ Linh
Xem chi tiết
Etermintrude💫
Xem chi tiết
dau tien duc
Xem chi tiết
Ngoc An Pham
Xem chi tiết
Nguyễn Châu Mỹ Linh
Xem chi tiết
Nguyễn Châu Mỹ Linh
Xem chi tiết
Etermintrude💫
Xem chi tiết
Vũ Anh Quân
Xem chi tiết
Vũ Anh Quân
Xem chi tiết