Áp dụng bđt Bunhia copski ta có \(\left(\sqrt{3x-5}.1+\sqrt{7-3x}.1\right)^2\le\left[\left(\sqrt{3x-5}\right)^2+\left(\sqrt{7-3x}\right)^2\right]\left(1^2+1^2\right)\Leftrightarrow\left(\sqrt{3x-5}+\sqrt{7-3x}\right)^2\le\left(3x-5+7-3x\right).2\Leftrightarrow\left(\sqrt{3x-5}+\sqrt{7-3x}\right)^2\le4\Leftrightarrow\sqrt{3x-5}+\sqrt{7-3x}\le2\)Dấu = xảy ra khi \(\dfrac{\sqrt{3x-5}}{1}=\dfrac{\sqrt{7-3x}}{1}\Leftrightarrow3x-5=7-3x\Leftrightarrow6x=12\Leftrightarrow x=2\)
Vậy GTLN của biểu thức trên là 2 khi x=2
Lời giải:
Đặt \(A=\sqrt{3x-5}+\sqrt{7-3x}\)
Áp dụng BĐT Bunhiacopxky:
\(A^2=(\sqrt{3x-5}+\sqrt{7-3x})^2\leq (3x-5+7-3x)(1+1)\)
\(\Leftrightarrow A^2\leq 4\Rightarrow A\leq 2\). Dấu "=" xảy ra khi \(\frac{\sqrt{3x-5}}{1}=\frac{\sqrt{7-3x}}{1}\Leftrightarrow x=2\)
Vậy \(A_{\max}=2\) khi \(x=2\)