Lời giải:
Dễ thấy hệ có bộ nghiệm \((x,y)=(0;0)\)
Ta cần tìm $a$ sao cho hpt không còn nghiệm nào ngoài $(0;0)$
Trừ 2 PT cho nhau:
\(y^2-x^2=(x^3-y^3)-4(x^2-y^2)+a(x-y)\)
\(\Leftrightarrow (x-y)(x^2+xy+y^2)-4(x-y)(x+y)+a(x-y)+(x-y)(x+y)=0\)
\(\Leftrightarrow (x-y)(x^2+xy+y^2-3x-3y+a)=0\)
Ta thấy TH \(x-y=0\) đã thỏa mãn bộ nghiệm \(x=y=0\), nên để hpt không có nghiệm nào khác \((0;0)\)
thì pt \(x^2+xy+y^2-3x-3y+a=0(*)\) phải vô nghiệm hoặc có chỉ có nghiệm \(x=y=0\)
+) \((*)\) vô nghiệm:
\(\Leftrightarrow \Delta< 0\)
\(\Leftrightarrow (y-3)^2-4(y^2-3y+a)< 0\)
\(\Leftrightarrow 4a> -3y^2+6y+9\) với mọi y
\(\Leftrightarrow 4a> \max(-3y^2+6y+9)\)
\(\Leftrightarrow 4a> \max [12-3(y-1)^2]\)\(\Leftrightarrow 4a>12\Leftrightarrow a>3\)
+) \((*)\) có nghiệm \(x=y=0\Rightarrow a=0\)
\((*)\) trở thành \(x^2+xy+y^2-3(x+y)=0\)
Thay \(x=0\) vào ta thấy pt còn nghiệm \(y=3\) (không thỏa mãn tính duy nhất) (loại)
Vậy \(a>3\) thỏa mãn. (1)
--------------------------------------------
Giờ ta quay lại TH $x=y$ để kiểm tra lại
Thay vào pt đầu tiên: \(x^2=x^3-4x^2+ax\Leftrightarrow x^3-5x^2+ax=0\)
\(\Leftrightarrow x(x^2-5x+a)=0\)
Để pt có nghiệm duy nhất \(x=0\) thì $x^2-5x+a=0$ vô nghiệm hoặc chỉ có nghiệm là $0$
TH chỉ có nghiệm là $0$ kéo theo \(a=0\Rightarrow x^2-5x=0\) còn có nghiệm $x=5$ (vô lý)
TH vô nghiệm \(\Rightarrow \Delta=25-4a <0\Leftrightarrow a> \frac{25}{4}\) (2)
Từ (1),(2) suy ra \(a>\frac{25}{4}\)