Bài 2: Hệ hai phương trình bậc nhất hai ẩn. Luyện tập

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Bùi Minh Quan

Tìm giá trị của a để hệ phương trình sau có nghiệm duy nhất:

\(\left\{{}\begin{matrix}y^2=x^3-4x^2+ax\\x^2=y^3-4y^2+ay\end{matrix}\right.\)

Akai Haruma
15 tháng 11 2017 lúc 1:01

Lời giải:

Dễ thấy hệ có bộ nghiệm \((x,y)=(0;0)\)

Ta cần tìm $a$ sao cho hpt không còn nghiệm nào ngoài $(0;0)$

Trừ 2 PT cho nhau:

\(y^2-x^2=(x^3-y^3)-4(x^2-y^2)+a(x-y)\)

\(\Leftrightarrow (x-y)(x^2+xy+y^2)-4(x-y)(x+y)+a(x-y)+(x-y)(x+y)=0\)

\(\Leftrightarrow (x-y)(x^2+xy+y^2-3x-3y+a)=0\)

Ta thấy TH \(x-y=0\) đã thỏa mãn bộ nghiệm \(x=y=0\), nên để hpt không có nghiệm nào khác \((0;0)\)

thì pt \(x^2+xy+y^2-3x-3y+a=0(*)\) phải vô nghiệm hoặc có chỉ có nghiệm \(x=y=0\)

+) \((*)\) vô nghiệm:

\(\Leftrightarrow \Delta< 0\)

\(\Leftrightarrow (y-3)^2-4(y^2-3y+a)< 0\)

\(\Leftrightarrow 4a> -3y^2+6y+9\) với mọi y

\(\Leftrightarrow 4a> \max(-3y^2+6y+9)\)

\(\Leftrightarrow 4a> \max [12-3(y-1)^2]\)\(\Leftrightarrow 4a>12\Leftrightarrow a>3\)

+) \((*)\) có nghiệm \(x=y=0\Rightarrow a=0\)

\((*)\) trở thành \(x^2+xy+y^2-3(x+y)=0\)

Thay \(x=0\) vào ta thấy pt còn nghiệm \(y=3\) (không thỏa mãn tính duy nhất) (loại)

Vậy \(a>3\) thỏa mãn. (1)

--------------------------------------------

Giờ ta quay lại TH $x=y$ để kiểm tra lại

Thay vào pt đầu tiên: \(x^2=x^3-4x^2+ax\Leftrightarrow x^3-5x^2+ax=0\)

\(\Leftrightarrow x(x^2-5x+a)=0\)

Để pt có nghiệm duy nhất \(x=0\) thì $x^2-5x+a=0$ vô nghiệm hoặc chỉ có nghiệm là $0$

TH chỉ có nghiệm là $0$ kéo theo \(a=0\Rightarrow x^2-5x=0\) còn có nghiệm $x=5$ (vô lý)

TH vô nghiệm \(\Rightarrow \Delta=25-4a <0\Leftrightarrow a> \frac{25}{4}\) (2)

Từ (1),(2) suy ra \(a>\frac{25}{4}\)


Các câu hỏi tương tự
Eros Starfox
Xem chi tiết
Linh Bùi
Xem chi tiết
Phạm Quỳnh Anh
Xem chi tiết
nho quả
Xem chi tiết
Linh Bùi
Xem chi tiết
Linh Bùi
Xem chi tiết
Ong Seong Woo
Xem chi tiết
Ong Seong Woo
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết