\(E=1+2+2^2+...+2^{2017}\)
\(\Rightarrow2E=2\left(1+2+2^2+...+2^{2017}\right)\)
\(\Rightarrow2E=2+2^2+2^3+...+2^{2018}\)
\(\Rightarrow2E-E=2+2^2+2^3+...+2^{2018}-1-2-2^2-...-2^{2017}\)
\(\Rightarrow E=2^{2018}-1\)
Vậy \(E=2^{2018}-1\)
\(E=1+2+2^2+...+2^{2017}\)
\(\Rightarrow2E=2+2^2+2^3+...+2^{2018}\)
\(\Rightarrow2E-E=(2+2^2+2^3+...+2^{2018}\text{)}-\left(1+2+2^2+...+2^{2017}\right)\)
\(\Rightarrow E=2^{2018}-1\)
E = 1 + 2 + 22 + ... + 22017
=> 2E = 2 + 22 + ... + 22017 + 22018
=> 2E - E = 22018 - 1
=> E = 22018 - 1
@Ogami rei