Ta có \(\frac{x+y}{3}=\frac{5-z}{1}=\frac{y+z}{2}=\frac{9+y}{5}=k\left(1\right)\)
\(\frac{\left(x+y\right)+\left(5-z\right)+\left(y+z\right)+\left(9+y\right)}{3+1+2+5}=\frac{x+y-4}{1}\)
\(\Rightarrow\left\{\begin{matrix}x+y-4=k\\x+y=3k\end{matrix}\right.\)\(\Rightarrow k+4=x+y\)
\(\Rightarrow4+k=3k\Rightarrow4=2k\Rightarrow k=2\)
\(\Rightarrow5-z=k\Rightarrow z=5-k=5-2=3\)
\(9+y=5k\Rightarrow y=5k-9=10-9=1\)
\(x+y=3k\Rightarrow x=3k-y=6-1=5\)
Từ \(\left(1\right)\Rightarrow\left\{\begin{matrix}x=5\\y=1\\z=3\end{matrix}\right.\)