phần a sai đề ak?
phải là \(\frac{z+y+1}{y} \) chứ
Ta có:\(\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3}{z}=\dfrac{y+z+1+x+z+2+x+y-3}{x+y+z}=\dfrac{2.\left(x+y+z\right)}{x+y+z}=\dfrac{1}{x+y+z}\)=> \(2.\left(x+y+z\right)=1\)
\(x+y+z=\dfrac{1}{2}\) (1)
Từ (1) => \(\dfrac{y+z+1}{x}=\dfrac{1}{\dfrac{1}{2}}=2\)
=> \(\dfrac{y+z+1}{x}+1=2+1=3\)
\(\dfrac{y+z+x+1}{x}=3\)
\(\dfrac{\dfrac{1}{2}+1}{x}=3\)
\(\dfrac{\dfrac{3}{2}}{x}=3\)
\(x=\dfrac{3}{2}:3=\dfrac{1}{2}\)
Tương tự đối với tìm y
Ta sẽ có : \(y=\dfrac{5}{6}\)
=> \(z=x+y+z-x-y=\dfrac{1}{2}-\dfrac{1}{2}-\dfrac{5}{6}=\dfrac{-5}{6}\)
Vậy ...