a) \(2^{x+1}\cdot3^y=12^x\)
\(\Rightarrow2^{x+1}.3^y=4^x\cdot3^x\)
\(\Rightarrow2^{x+1}\cdot3^y=2^{2x}\cdot3^x\)
\(\left\{{}\begin{matrix}x+1=2x\\x=y\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left(x-1\right)^2=0\\x=y\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
Vậy (x;y) = (1;1)