Tìm số nguyên dương a,b sao cho \(\frac{a^2+b}{b^2-a}\)và \(\frac{b^2+a}{a^2-b}\) đều là số nguyên
a)Tìm hai số chẵn liên tiếp mà hiệu các lập phương của hai số đó bằng 2012
b)Cho 2012 số thực khác nhau. Biết tích của 13 số bất ký trong 2012 số đó luôn là một số dương. C/m 2012 số đó đều dương
c)Cho 5 số nguyên khác không:a, b, c,d,k và abc/dk<0. Ss (bcd/ka)+(cdk/ab)+(dka/bc) và số 0
d)Cho biết tồn tại hai số thực a, b thỏa a+b=2 và a^3+b^3=14. Tìm giá trị a^5+b^5
1. Tìm các số nguyên tố a,b,c sao cho a.b.c=3(a+b+c)
2. Tìm số nguyên tố p sao cho 2p+1 là lập phương của 1 số nguyên tố
3. Cho a,b,c >0 . Cm \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
tìm các số nguyên a và b sao cho : a2-2ab+2b2-4a+7<0
-Cho a,b thuộc Z thỏa (a^2-ab+b^2) chia hết cho 2. Chứng minh(a^3+b^3) chia hết cho 8
-Tìm hai số nguyên liên tiếp mà hiệu các bình phương của hai số đó bằng 2013
-Tìm các số nguyên n để 2013/[(4n^2)-4n+3] có giá trị nguyên
-Cho biết tồn tại hai số thực a,b khác 0 thỏa 1/a -1/b =1/ab. Tính giá trị M= (a^3 - b^3 +1)/(a^2 + b^2 -1)
Nếu a và b là 2 số nguyên dương thoã mãn \(a^2-b^2=97.\).Khí đó giá trị của biểu thức ..
Cho A= x^4 +4 và b= x^4 + x^2 +2
a)tìm GTLN CỦA A-B
b) Phân tích A;B thành nhân tử
c) tìm x thuộc N để A và B cũng là số nguyên tố
Cho A= x^4 +4 và b= x^4 + x^2 +2
a)tìm GTLN CỦA A-B
b) Phân tích A;B thành nhân tử
c) tìm x thuộc N để A và B cũng là số nguyên tố
Cho 2 số nguyên a,b thỏa mãn \(a^2+b^2+1=2\left(ab+a+b\right)\) . CM : a và b là 2 số chính phương liên tiếp