\(\frac{x^2}{x^2-y^2-z^2}=\frac{x^2}{\left(x+y\right)\left(x-y\right)-z^2}=\frac{x^2}{-z\left(x-y\right)-z^2}=\frac{x^2}{-z\left(x-y+z\right)}=\frac{x^2}{-z\left(-2y\right)}=\frac{x^2}{2yz}\)
Tương tự ta được:
\(P=-\frac{1}{2}\left(\frac{x^2}{yz}+\frac{y^2}{zx}+\frac{z^2}{xy}\right)=-\frac{1}{2}\left(\frac{x^3+y^3+z^3}{xyz}\right)\)
Mà \(x^3+y^3+z^3=x^3+y^3+3xy\left(x+y\right)+z^3-3xy\left(x+y\right)\)
\(=\left(x+y\right)^3+z^3+3xyz\)
\(=\left(-z\right)^3+z^3+3xyz=3xyz\)
\(\Rightarrow P=-\frac{1}{2}.\frac{3xyz}{xyz}=-\frac{3}{2}\)