\(=lim\frac{3.2^n-3^n}{2.2^n+3.3^n}=lim\frac{3.\left(\frac{2}{3}\right)^n-1}{2.\left(\frac{2}{3}\right)^n+3}=\frac{3.0-1}{2.0+3}=-\frac{1}{3}\)
\(=lim\frac{3.2^n-3^n}{2.2^n+3.3^n}=lim\frac{3.\left(\frac{2}{3}\right)^n-1}{2.\left(\frac{2}{3}\right)^n+3}=\frac{3.0-1}{2.0+3}=-\frac{1}{3}\)
Tính các giới hạn sau (\(n\rightarrow+\infty\) )
a) \(\lim\limits\dfrac{\left(-3\right)^n+2.5^n}{1-5^n}\)
b) \(\lim\limits\dfrac{1+2+3+....+n}{n^2+n+1}\)
c) \(\lim\limits\left(\sqrt{n^2+2n+1}-\sqrt{n^2+n-1}\right)\)
Tính 1) \(lim\frac{\sqrt{n}-2}{n+\sqrt{n}+1}\)
2) \(lim\frac{\sqrt[3]{n^3+n}+2}{n+2}\)
3)\(lim\frac{\sqrt[3]{n^3+1}-1}{\sqrt{n^2+3}-2}\)
1. tính gới hạn \(\lim\limits_{x\rightarrow1}\frac{\sqrt[3]{x+7}-\sqrt{5-x^2}}{x-1}\)
2. tính gới hạn của dãy số \(\lim\limits\frac{1^7+2^7+...+n^7}{n^8}\)
Trong các giới hạn sau , giới hạn nào không tồn tại ?
A. \(lim\frac{x+1}{\sqrt{x-2}}\left(x\rightarrow1\right)\)
B. \(lim\frac{x+1}{\sqrt{-x+2}}\left(x\rightarrow-1\right)\)
C. \(lim\frac{x+1}{\sqrt{2-x}}\left(x\rightarrow1\right)\)
D. \(lim\frac{x+1}{\sqrt{2+x}}\left(x\rightarrow-1\right)\)
Tính giới hạn T = lim \(\left(\sqrt{16^{n+1}+4^n}-\sqrt{16^{n+1}+3^n}\right)\)
A. \(T=0\)
B. \(T=\frac{1}{4}\)
C. \(T=\frac{1}{8}\)
D. \(T=\frac{1}{16}\)
Tính giới hạn sau :
lim x tiến tới -2\(\frac{2\left|x-1\right|-5\sqrt{x^2-3}}{2x+3}\)
Tính giới hạn sau:
\(\lim\limits\sqrt{2\sqrt{2\sqrt{2...\sqrt{2}}}}\left(\text{n dấu căn}\right)\)
Tính giới hạn của dãy số:
\(u_n=\dfrac{1}{2\sqrt{1}+\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+...+\dfrac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}\)
Tìm các giới hạn sau :
a) \(\lim\limits_{x\rightarrow-2}\dfrac{x+5}{x^2+x-3}\)
b) \(\lim\limits_{x\rightarrow3^-}\sqrt{x^2+8x+3}\)
c) \(\lim\limits_{x\rightarrow+\infty}\left(x^3+2x^2\sqrt{x}-1\right)\)
d) \(\lim\limits_{x\rightarrow-1}\dfrac{2x^3-5x-4}{\left(x+1\right)^2}\)