\(T=lim\frac{4^n-3^n}{\sqrt{16.16^n+4^n}+\sqrt{16.16^n+3^n}}=\lim\limits\frac{1-\left(\frac{3}{4}\right)^n}{\sqrt{16+\left(\frac{4}{16}\right)^n}+\sqrt{16+\left(\frac{3}{16}\right)^n}}=\frac{1}{2\sqrt{16}}=\frac{1}{8}\)
\(T=lim\frac{4^n-3^n}{\sqrt{16.16^n+4^n}+\sqrt{16.16^n+3^n}}=\lim\limits\frac{1-\left(\frac{3}{4}\right)^n}{\sqrt{16+\left(\frac{4}{16}\right)^n}+\sqrt{16+\left(\frac{3}{16}\right)^n}}=\frac{1}{2\sqrt{16}}=\frac{1}{8}\)
Cho f (x ) là một đa thức thỏa mãn lim \(\frac{f\left(x\right)-16}{x-1}=24\) ( x \(\rightarrow\) 1 ) . Tính lim \(\frac{f\left(x\right)-16}{\left(x-1\right)\left(\sqrt{2f\left(x\right)+4}+6\right)}\) ( x \(\rightarrow\) 1 )
A. 24
B. \(+\infty\)
C. 2
D. 0
1. tính gới hạn \(\lim\limits_{x\rightarrow1}\frac{\sqrt[3]{x+7}-\sqrt{5-x^2}}{x-1}\)
2. tính gới hạn của dãy số \(\lim\limits\frac{1^7+2^7+...+n^7}{n^8}\)
Mọi người giúp em với.
Tính:
a) \(\lim\limits_{x\rightarrow1}\left(\frac{x^m-1}{x^n-1}\right)\)
b) \(\lim\limits_{x\rightarrow1}\frac{\left(1-\sqrt{x}\right)\left(1-\sqrt[3]{x}\right)\left(1-\sqrt[4]{x}\right)\left(1-\sqrt[5]{x}\right)}{\left(1-x\right)^4}\)
Trong các giới hạn sau , giới hạn nào không tồn tại ?
A. \(lim\frac{x+1}{\sqrt{x-2}}\left(x\rightarrow1\right)\)
B. \(lim\frac{x+1}{\sqrt{-x+2}}\left(x\rightarrow-1\right)\)
C. \(lim\frac{x+1}{\sqrt{2-x}}\left(x\rightarrow1\right)\)
D. \(lim\frac{x+1}{\sqrt{2+x}}\left(x\rightarrow-1\right)\)
Tìm giới hạn M = lim \(\frac{\sqrt[3]{1+3x}-\sqrt{1+2x}}{1-cos2x}\) \(\left(x\rightarrow0\right)\)
A. \(+\infty\)
B. \(-\infty\)
C. \(-\frac{1}{4}\)
D. 0
Tìm giới hạn E = lim \(\left(\sqrt[4]{16x^4+3x+1}-\sqrt{4x^2+2}\right)\) \(\left(x\rightarrow+\infty\right)\)
A. \(+\infty\)
B. \(-\infty\)
C. \(\frac{1}{4}\)
D. 0
Tính 1) \(lim\frac{\sqrt{n}-2}{n+\sqrt{n}+1}\)
2) \(lim\frac{\sqrt[3]{n^3+n}+2}{n+2}\)
3)\(lim\frac{\sqrt[3]{n^3+1}-1}{\sqrt{n^2+3}-2}\)
Tìm giới hạn D = lim \(\left(\sqrt[3]{x^3+x^2+1}+\sqrt{x^2+x+1}\right)\) \(\left(x\rightarrow-\infty\right)\)
A. \(+\infty\)
B. \(-\infty\)
C. \(-\frac{1}{6}\)
D. 0
Tính giới hạn B = lim \(x\left(\sqrt{x^2+2x}-2\sqrt{x^2+x}+x\right)\) \(\left(x\rightarrow+\infty\right)\)
A. \(+\infty\)
B. \(-\infty\)
C. \(-\frac{1}{4}\)
D. 0