Để biểu thức \(\sqrt{\dfrac{1}{2}x}\) có nghĩa
\(\Rightarrow\dfrac{1}{2}x\ge0\)
\(\Rightarrow x\ge0\)
Để biểu thức \(\sqrt{\dfrac{1}{2}x}\) có nghĩa
\(\Rightarrow\dfrac{1}{2}x\ge0\)
\(\Rightarrow x\ge0\)
b)tìm giá trị nguyên của x để A có giá trị nguyên
\(\sqrt{2x+11}+\sqrt{x-1}\) ; \(\dfrac{\sqrt{-5x}}{x}\) ; \(\dfrac{\sqrt{7x^2+1}}{5}\); \(\sqrt{x^2-14x+33}\); \(\dfrac{\sqrt{-x^2+6x+16}}{-2}+\dfrac{x^2-2x}{3x^2}\)
Tìm ĐKXĐ của x để các biểu thức trên có nghĩa
Cho \(A=\dfrac{2\sqrt{x}-1}{\sqrt{x}-2}\) (\(x\ge0;\) \(x\ne4\) ). Tổng các giá trị nguyên của x để biểu thức A nguyên?
Số giá trị nguyên của x để biểu thức \(\dfrac{2\sqrt{x}-7}{\sqrt{x}-1}\) có giá trị nguyên là?
\(P=\dfrac{2\sqrt{x}-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}+\dfrac{2\sqrt{x}+1}{\sqrt{x}-3}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}\)
a) rút gọn P
b) tìm các giá trị nguyên của x để P có giá trị nguyên
Tìm giá trị của x để biểu thức sau được xác định:
\(\sqrt{-x^2+5x-4}+\dfrac{1}{2x-7}\)
\(A=\dfrac{x+1-2\sqrt{x}}{\sqrt{x}-1}+\dfrac{x+\sqrt{x}}{\sqrt{x}+1}\)
a. Đặt điều kiện để biểu thức A có nghĩa
b.Rút gọn biểu thức A
c.Với giá trị noà của x thì A<-1
Cho biểu thức: A = \(\dfrac{x+\sqrt{x^2-4x}}{x-\sqrt{x^2}-4x}-\dfrac{x-\sqrt{x^2-4x}}{x+\sqrt{x^2}-4x}.\)
a) Tìm điều kiện của x để biểu thức có nghĩa.
b) Rút gọn biểu thức A.
c) Tính giá trị của x để A < \(\sqrt{5}.\)
bài 1: tìm điều kiện xác định với giá trị nào của x thì các biểu thức sau đây xác định
a, \(\sqrt{-2x+3}\)
b, \(\sqrt{3x+4}\)
c, \(\sqrt{1+x\overset{2}{ }}\)
d, \(\sqrt{^{-3}_{3x+5}}\)
e, \(\sqrt{\dfrac{2}{x}}\)
help me :((
Cho P=\(\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}-\dfrac{\sqrt{x}}{3-\sqrt{x}}-\dfrac{3x+3}{x-9}\right):\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)
a) Rút gọn P
b)Tìm các giá trị nguyên của x để P < -0,5