\(2x^2-5x+2< 0\Leftrightarrow\frac{1}{2}< x< 2\)
Xét \(x^2-\left(2m+1\right)x+m\left(m+1\right)\le0\)
\(\Leftrightarrow\left(x-m\right)\left(x-m-1\right)\le0\)
\(\Leftrightarrow m\le x\le m+1\)
Để hệ đã cho có nghiệm:
TH1: \(\left\{{}\begin{matrix}m< \frac{1}{2}\\m+1>\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< \frac{1}{2}\\m>-\frac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow-\frac{1}{2}< m< \frac{1}{2}\)
TH2: \(\frac{1}{2}\le m< 2\)
Vậy để BPT có nghiệm \(\Rightarrow-\frac{1}{2}< m< 2\)