Đặt \(\left(n;n+1\right)=d\) (d\(\in N\)*)
=> \(\left\{{}\begin{matrix}n⋮d\\n+1⋮d\end{matrix}\right.\) => \(1⋮d=>d=1\)
=> \(\left(n;n+1\right)=1\)
Đặt \(\left(n+1;n+2\right)=d\)' (d'\(\in N\)*)
=> \(\left\{{}\begin{matrix}n+1⋮d'\\n+2⋮d'\end{matrix}\right.\) => \(1⋮d'\) => d' = 1
=> \(\left(n+1;n+2\right)=1\)
Đặt \(\left(n;n+2\right)=d"\) (d\(\in N\)*)
=> \(\left\{{}\begin{matrix}n⋮d"\\n+2⋮d"\end{matrix}\right.\) => \(2⋮d"\) => \(\left[{}\begin{matrix}d"=1\\d"=2\end{matrix}\right.\)
TH1: d" = 1
=> BCNN của n; n+1; n+2 là n(n+1)(n+2)
TH2: d" = 2
=> BCNN của n; n+1;n+2 là \(\dfrac{n\left(n+1\right)\left(n+2\right)}{2}\)