Tìm nghiệm dương nhỏ nhất của bất phương trình \(\left|\left|x^2-4x-5\right|+2x+9\right|\le\left|x^2-x+5\right|\)
Cho bất phương trình \(\left|x^2+x+a\right|+\left|x^2-x+a\right|\le2x\left(1\right)\) Khi đó khẳng định nào sau đây đúng nhất?
A. (1) có nghiệm khi \(a\le\dfrac{1}{4}\)
B. Mọi nghiện của (1) đều không âm.
C. (1) có nghiệm lớn hơn 1 khi a<0
D. Tất cả đều đúng
(làm theo hình thức tự luận)
Để bất phương trình \(\sqrt{\left(x+5\right)\left(3-x\right)}\le x^2+2x+a\) nghiệm đúng \(\forall x\in\left[-5;3\right]\) tham số a phải thỏa mãn đk?
Cho hàm số \(y=f\left(x\right)=x^2-4x+3\). Tìm m nguyên sao cho \(f^2\left(\left|x\right|\right)+\left(m-2\right)f\left(\left|x\right|\right)+m-3=0\) có 6 nghiệm phân biệt
Cho pt \(x^4+4x^3+4\left(1-m\right)x^2-8mx+3m+1=0\). Tìm m để phương trình có nghiệm.
Tìm Min của m để \(\dfrac{4x-\sqrt{2x-1}-m}{\sqrt{x^2+\left(m-1\right)^2}-m+1}\le0\) có nghiệm.
Cho \(ax^2+bx+c=0\) có nghiệm, \(f\left(x\right)=\alpha x^2+\beta x+\gamma\) \(\left(a.\alpha\ne0\right)\) có hai nghiệm và khoảng hai nghiệm đó chứa \(\left(0;2\right)\). Chứng minh \(a.f\left(0\right)x^2+b.f\left(1\right)x+c.f\left(2\right)=0\) có nghiệm
tìm m để phương trình \(\left|x+2\right|+m\left|x-1\right|=3\) có nghiệm duy nhất
Cho phương trình:
\(-x^2+2x+4\sqrt{\left(3-x\right)\left(x+1\right)}=m-2\)
Tìm m để pt có nghiệm