Ta có: \(\widehat{A_1}+\widehat{ABD}+\widehat{B}=\widehat{A_2}+\widehat{ADC}+\widehat{C}\) ( Cùng bằng 1800 )
Mà \(\widehat{A_1}=\widehat{A_2}\) nên ta có: \(\widehat{ADB}+\widehat{B}-\widehat{ADC}-\widehat{C}=0\)
\(\Leftrightarrow\widehat{ADC}-\widehat{ADB}=\widehat{B}-\widehat{C}\) hay \(\widehat{ADC}-\widehat{ADB}=30^0\)
Lại có: \(\widehat{ADC},\widehat{ADB}\) là 2 góc kề bù nên \(\widehat{ADB}+\widehat{ADC}=180^0\)
\(\Rightarrow\widehat{ADB}=\dfrac{180^0-30^0}{2}=75^0,\widehat{ADC}=75^0+30^0=105^0\)
Vậy \(\widehat{ADB}=75^0;\widehat{ADC}=105^0\)