\(\sqrt{2+\sqrt{3}}\cdot\sqrt{2+\sqrt{2+\sqrt{3}}}\cdot\sqrt{2-\sqrt{2+\sqrt{3}}}\)
= \(\sqrt{2+\sqrt{3}}+\sqrt{2^2-\left(\sqrt{2+\sqrt{3}}\right)^2}\)
= \(\sqrt{2+\sqrt{3}}+\sqrt{4-\left(2+\sqrt{3}\right)}\)
= \(\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}\)
= \(\sqrt{4-3}\)
= \(\sqrt{1}\)
= \(1\)