Câu 1:
\(\frac{5^4.18^4}{125.9^5.16}\) = \(\frac{5^4.\left(2.9\right)^4}{5^3.9^5.2^4}\) = \(\frac{5^4.2^4.9^4}{5^3.9^5.2^4}\) = \(\frac{5}{9}\)
Câu 2:
\(\frac{\left(-5\right)^{32}.20^{43}}{\left(-8\right)^{29}.125^{25}}\) = \(\frac{5^{32}.\left(4.5\right)^{43}}{\left(-2.4\right)^{29}.\left(5^3\right)^{25}}\) = \(\frac{5^{32}.4^{43}.5^{43}}{\left(-2\right)^{29}.4^{29}.5^{75}}\) = \(\frac{4^{14}.5^{43}}{\left(-2\right)^{29}.5^{43}}\)
=\(\frac{4^{14}}{\left(-2\right)^{29}}\) = = \(\frac{\left[-2.\left(-2\right)\right]^{14}}{\left(-2\right)^{29}}\) = \(\frac{\left(-2\right)^{14}.\left(-2\right)^{14}}{\left(-2\right)^{29}}\) = \(\frac{\left(-2\right)^{14}}{\left(-2\right)^{15}}\) = \(\frac{-1}{2}\)