\(=\sqrt{3}\left(2\sqrt{3}+3\sqrt{3}-\sqrt{3}\right)=\sqrt{3}\cdot4\sqrt{3}=12\)
\(=\left(\sqrt{3}\cdot\sqrt{4}+\sqrt{9}\cdot\sqrt{3}-\sqrt{3}\right)\cdot\sqrt{3}\\ =3\cdot\left(2+3-1\right)=12\)
\(=\sqrt{3}\left(2\sqrt{3}+3\sqrt{3}-\sqrt{3}\right)=\sqrt{3}\cdot4\sqrt{3}=12\)
\(=\left(\sqrt{3}\cdot\sqrt{4}+\sqrt{9}\cdot\sqrt{3}-\sqrt{3}\right)\cdot\sqrt{3}\\ =3\cdot\left(2+3-1\right)=12\)
Thực hiện phép tính:
D= \(\sqrt{9+6\sqrt{2}}\) - \(\sqrt{9-6\sqrt{2}}\) - \(\sqrt{21-12\sqrt{3}}\)
1.Thực hiện phép tính:
a.\(\sqrt{12}-\sqrt{27}+\sqrt{3}\)
b.\(\left(\sqrt{12}-2\sqrt{75}\right)\sqrt{3}\)
c.\(\sqrt{225}-\sqrt{700}+\sqrt{1008}-\sqrt{448}\)
d.\(\sqrt{3}\left(\sqrt{12}+\sqrt{27}-\sqrt{3}\right)\)
thực hiện phép tính :
(2\(\sqrt{6}\) - 4\(\sqrt{3}\) + 5\(\sqrt{2}\) - \(\dfrac{1}{4}\)\(\sqrt{8}\)) . 3\(\sqrt{6}\)
thực hiện phép tính
\(\sqrt{12}+2\sqrt{27}+3\sqrt{75}-9\sqrt{48}\)
Rút gọn các biểu thức sau :
a,\(\dfrac{\sqrt{6}+\sqrt{10}}{\sqrt{21}+\sqrt{35}}\)
b,\(\dfrac{\sqrt{405}+3\sqrt{27}}{3\sqrt{3}+\sqrt{45}}\)
c,\(\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{4}-\sqrt{6}-\sqrt{9}-\sqrt{12}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
d, D=\(\dfrac{2}{x^2-y^2}\cdot\sqrt{\dfrac{9\left(x^2+2xy+y^2\right)}{4}}\) \(\left(vớix\ne y,x\ne-y\right)\)
thực hiện phép tính
P=\(\dfrac{2\sqrt{8}-\sqrt{12}}{\sqrt{18}-\sqrt{48}}-\dfrac{\sqrt{5}+\sqrt{27}}{\sqrt{30}+\sqrt{162}}\)
Thực hiện phép tính
\(\left(\sqrt{ab}+2\sqrt{\dfrac{b}{a}}-\sqrt{\dfrac{a}{b}+\sqrt{\dfrac{1}{ab}}}\right).\sqrt{ab}\)
BÀI 1 : THỰC HIỆN PHÉP TÍNH
a, \(\left(1+\sqrt{3}-\sqrt[2]{2}\right)\times\left(1+\sqrt{3}+\sqrt[2]{2}\right)\)
b, \(\left(\dfrac{3}{2}\times\sqrt{6}+2\times\sqrt{\dfrac{2}{3}}-4\times\sqrt{\dfrac{3}{2}}\right)\times\left(3\times\sqrt{\dfrac{2}{3}}-\sqrt{12}-\sqrt{6}\right)\)
BÀI 2 : rút gọn
B = \(\sqrt{x+2\sqrt{2x-4}}+\sqrt{x-2\sqrt{2x-2}}\)
Rút gọn:
a)\(\dfrac{\sqrt{6}+\sqrt{10}}{\sqrt{21}+\sqrt{35}}\)
b)\(\dfrac{\sqrt{405}+3\sqrt{27}}{3\sqrt{3}+\sqrt{45}}\)
c)\(\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{4}-\sqrt{6}-\sqrt{9}-\sqrt{12}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
d)\(\dfrac{\sqrt{6-2\sqrt{5}}}{\sqrt{5}-1}\)