Đặt B= \(\dfrac{2016}{1}\)+ \(\dfrac{2015}{2}\)+...+ \(\dfrac{2}{2015}\)+\(\dfrac{1}{2016}\)
= \(\dfrac{2016}{1}\)+1+\(\dfrac{2015}{2}\)+1+...+\(\dfrac{2}{2015}\)+1+\(\dfrac{1}{2016}\)+1- 2016
= \(\dfrac{2017}{2}\)+...+\(\dfrac{2017}{2015}\)+\(\dfrac{2017}{2016}\)+2017 -2016
= \(\dfrac{2017}{2}\)+...+\(\dfrac{2017}{2015}\)+\(\dfrac{2017}{2016}\)+\(\dfrac{2017}{2017}\)
= 2017. (\(\dfrac{1}{2}\)+\(\dfrac{1}{3}\)+...+\(\dfrac{1}{2016}\)+\(\dfrac{1}{2017}\))
=> phép tính = \(\dfrac{1}{2017}\)