Rút gọn
H=\(\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{18-\sqrt{128}}}}}\)
F=\(\frac{\left(5+2\sqrt{6}\right)\left(49-20\sqrt{6}\right)\sqrt{5-2\sqrt{6}}}{9\sqrt{3}-11\sqrt{2}}\)
G=\(\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)
E=\(\frac{2\sqrt{3+\sqrt{5-13+\sqrt{48}}}}{\sqrt{6}+\sqrt{2}}\)
D=\(\sqrt{4+\sqrt{15}}+\sqrt{4-\sqrt{15}}-2\sqrt{3-\sqrt{5}}\)
Z=\(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10-2\sqrt{5}}}\)
thực hiện phép tính
\(\left(\dfrac{15}{\sqrt{6}+1}+\dfrac{4}{\sqrt{16}-2}-\dfrac{12}{3-\sqrt{16}}\right).\left(\sqrt{6}+11\right)\)
Đưa biểu thức trong căn về dạng hình phương của một tổng hoặc một hiệu:
a/ \(\sqrt{7-2\sqrt{10}}-\sqrt{6-2\sqrt{5}}\)
b/ \(\sqrt{33-12\sqrt{6}}+\sqrt{15-6\sqrt{6}}\)
c/\(\sqrt{9-4\sqrt{5}}+\sqrt{12-2\sqrt{35}}\)
d/ \(\sqrt{4-2\sqrt{3}}+\sqrt{28-10\sqrt{3}}\)
e/ \(\frac{\sqrt{5}-\sqrt{15}}{1-\sqrt{3}}-\sqrt{21+4\sqrt{5}}\)
Chứng minh các đẳng thức:
a) \(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)=1
b)\(\dfrac{\left(5+2\sqrt{6}\right)\sqrt{5-2\sqrt{6}}}{\sqrt{2}+\sqrt{3}}\)-1 =0
c) \(\sqrt{26+15\sqrt{3}}+\sqrt{26-15\sqrt{3}}-5\sqrt{\dfrac{3}{2}}=\dfrac{\sqrt{6}}{2}\)
Rút gọn : Sử dụng công thức \(\sqrt{A^2}=\left|A\right|\)
a) \(\frac{\sqrt{2-\sqrt{3}}}{\sqrt{2}}\)
b) \(\sqrt{8}.\sqrt{3-\sqrt{5}}\)
c) \(\sqrt{15-6\sqrt{6}}-\sqrt{33-12\sqrt{6}}\)
d) \(\sqrt{6-2\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{18-\sqrt{128}}}}\)
Bài 1: Rút gọn biểu thức
a) \(A=\sqrt{26+15\sqrt{3}}\)
b) \(B=\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}-\sqrt{2}\)
c) \(C=\sqrt{8-2\sqrt{15}}-\sqrt{8+2\sqrt{15}}\)
d) \(D=\left(\sqrt{6}-2\right)\left(5+\sqrt{24}\right)\sqrt{5-\sqrt{24}}\)
e) \(E=\left(\sqrt{10}-\sqrt{2}\right)\left(\sqrt{3+\sqrt{5}}\right)\)
f) \(F=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
g) \(G=\left(2-\sqrt{3}\right)\sqrt{26+15\sqrt{3}}-\left(2+\sqrt{3}\right)\sqrt{26-15\sqrt{3}}\)
h) \(H=\frac{\left(2+\sqrt{3}\right)\sqrt{2-\sqrt{3}}}{\sqrt{2+\sqrt{3}}}\)
Thực hiện phép tính:
a) \(\left(\frac{1}{7-4\sqrt{3}}+\frac{3}{7+4\sqrt{3}}\right)\left(7+2\sqrt{3}\right)\)
b)\(\left(\frac{3\sqrt{5}-\sqrt{15}}{\sqrt{27}-3}+\frac{2\sqrt{5}}{\sqrt{3}}\right).4\sqrt{15}\)
c)\(\sqrt{5-2\sqrt{6-25-\sqrt{96}}}\)
d)\(\sqrt{23-2\sqrt{112}}+\sqrt{23+2\sqrt{112}}\)
rút gọn các biểu thức sau
a) \(\frac{4}{\sqrt{10}}\left(\sqrt{3+\sqrt{5}}+\sqrt{3-\sqrt{5}}\right)\)
b)\(\left(4+\sqrt{\text{15}}\right).\left(\sqrt{10}-\sqrt{6}\right).\sqrt{\text{4}-\sqrt{15}}\)
c)\(\sqrt{\text{4 }\sqrt{\text{6}}\text{ }+8\sqrt{\text{3 }}+4\sqrt{2}+18}\)
Tính:
\(a)D=\left(\sqrt{2}-\sqrt{3-\sqrt{5}}\right)\left(-\sqrt{2}\right)\\ b)2\sqrt{3}\left(\sqrt{27}+2\sqrt{48}\right)-\sqrt{75}\\ c)E=\left(\sqrt{10}+\sqrt{6}\right)\sqrt{8-2\sqrt{15}}\\ d)P=\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}\)
\(e)M=-3\sqrt{50}+2\sqrt{98}-7\sqrt{72}\)