Giải:
\(A=\dfrac{7}{14}+\dfrac{5}{15}+\dfrac{10}{60}\)
\(\Leftrightarrow A=\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{6}\)
\(\Leftrightarrow A=\dfrac{3}{6}+\dfrac{2}{6}+\dfrac{1}{6}\)
\(\Leftrightarrow A=\dfrac{3+2+1}{6}\)
\(\Leftrightarrow A=\dfrac{6}{6}=1\)
Vậy ...
\(A=\dfrac{7}{14}+\dfrac{5}{15}+\dfrac{10}{60}=\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{6}=\dfrac{3}{6}+\dfrac{2}{6}+\dfrac{1}{6}=\dfrac{6}{6}=1\)
A= \(\dfrac{7}{14}+\dfrac{5}{15}+\dfrac{10}{60}\)
= \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{6}\)
= \(\dfrac{3}{6}+\dfrac{2}{6}+\dfrac{1}{6}\)
= \(\dfrac{6}{6}\)= 1