a) \(\sqrt{3-\sqrt{5}}\left(\sqrt{10}-\sqrt{2}\right)\left(3+\sqrt{5}\right)\)
\(=\sqrt{3-\sqrt{5}}.\sqrt{2}\left(\sqrt{5}-1\right)\left(3+\sqrt{5}\right)\)
\(=\sqrt{6-2\sqrt{5}}\left(\sqrt{5}-1\right)\left(3+\sqrt{5}\right)\)
\(=\sqrt{\left(\sqrt{5}-1\right)^2}\left(\sqrt{5}-1\right)\left(3+\sqrt{5}\right)\)
\(=\dfrac{\left(\sqrt{5}-1\right)^2\left(6+2\sqrt{5}\right)}{2}=\dfrac{\left(\sqrt{5}-1\right)^2\left(\sqrt{5}+1\right)^2}{2}=\dfrac{\left[\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)\right]^2}{2}=\dfrac{\left(5-1\right)^2}{2}=8\)