\(\dfrac{3}{2}x^2y+2x^2y^2-\dfrac{1}{3}x^3y+3x^3y-5x^2y^2\\ =\dfrac{3}{2}x^2y+\left(2x^2y^2-5x^2y^2\right)-\left(\dfrac{1}{3}x^3y-3x^3y\right)\\ =\dfrac{3}{2}x^2y-3x^2y^2+\dfrac{8}{3}x^3y\)
\(=x^2y^2\left(2-5\right)+x^3y\left(-\dfrac{1}{2}+3\right)+\dfrac{3}{2}x^2y=-3x^2y^2+\dfrac{5}{2}x^3y+\dfrac{3}{2}x^2y\)
\(=\dfrac{3}{2}x^2y-3x^2y^2+\dfrac{5}{2}x^3y\)
=x2y2(2−5)+x3y(−12+3)+32x2y=−3x2y2+52x3y+32x2y