\(a,Tính\)
\(A=\frac{1}{2}-\frac{1}{3}=\frac{1}{6}\)
\(B=\frac{1}{3}-\frac{1}{4}=\frac{1}{12}\)
\(C=\frac{1}{4}-\frac{1}{5}=\frac{1}{20}\)
\(b,Tính\)
\(A+B=\left[{}\begin{matrix}\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)=\frac{1}{2}-\frac{1}{4}=\frac{1}{4}\\\frac{1}{6}+\frac{1}{12}=\frac{1}{4}\end{matrix}\right.\) ( 2 cách )
\(A+B+C=\left[{}\begin{matrix}\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\left(\frac{1}{4}-\frac{1}{5}\right)=\frac{1}{2}-\frac{1}{5}=\frac{3}{10}\\\frac{1}{6}+\frac{1}{12}+\frac{1}{20}=\frac{3}{10}\end{matrix}\right.\) ( 2 cách )
a)
\(A=\frac{1}{2}-\frac{1}{3}\)
\(A\) \(=\) \(\frac{1}{6}\).
\(B=\frac{1}{3}-\frac{1}{4}\)
\(B=\frac{1}{12}\).
\(C=\frac{1}{4}-\frac{1}{5}\)
\(C=\frac{1}{20}\).
b)
\(A+B=\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)\)
\(A+B=\frac{1}{6}+\frac{1}{12}\)
\(A+B=\frac{1}{4}\).
\(A+B+C=\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\left(\frac{1}{4}-\frac{1}{5}\right)\)
\(A+B+C=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}\)
\(A+B+C=\frac{3}{10}\).
Chúc bạn học tốt!