M is a point on QR such that \(MT\perp QR\) \(\Rightarrow MT=RS\)
We have: \(S_{PQRS}=RS.QR=MT.QR\)
and \(S_{QTR}=\frac{1}{2}MT.QR\Rightarrow S_{PQRS}=2.S_{QTR}\)
Otherwise, \(S_{QRT}=\frac{1}{2}QT.RT=4\left(cm^2\right)\Rightarrow S_{PQRS}=8\left(cm^2\right)\)