1, Cho \(\dfrac{5a+3b}{5c+3d}\) = \(\dfrac{7a-10b}{7c-10d}\). CMR \(\dfrac{a}{b}\) = \(\dfrac{c}{d}\)
Cho a/b = c/d. Chứng minh rằng:
7a2 + 3ab/5a -3b = 5c + 3d/5c-3d
Từ tỉ lệ thức : \(\frac{a}{b}=\frac{c}{d}\) , ta có thể suy ra \(\frac{a-2b}{c-2d}=\frac{-5a+....c}{3d-5b}\)
Số thích hợp điền vào chỗ trống là :
3. CMR : Nếu \(\dfrac{a}{b}\)=\(\dfrac{c}{d}\) thì :
a) \(\dfrac{5a+3b}{5a-3b}\)= \(\dfrac{5c+3d}{5c-3d}\)
b) \(\dfrac{7a^2+3ab}{11a^2-8b^2}\)=\(\dfrac{7c^2+3ab}{11c^2-8d^2}\)
Cho \(\dfrac{a}{b}=\dfrac{c}{d}\) CMR:
\(\dfrac{3a+2c}{3b+2d}=\dfrac{-5a+3c}{-5b+3d}\) (Làm cách dãy tỉ số bằng nhau)
B1:C/m \(a:\dfrac{a^2+ac}{b^2+bd}=\dfrac{3a^2+c^2}{3b^2+d^2}\)
b: \(\dfrac{7a+19c}{7b+19b}=\dfrac{a-3c}{b-3d}\)
c: \(\dfrac{a^3+c^3}{b^3+a^3}=\dfrac{4a^3-c^3}{4b^3-d^3}\)
help me
I: C/m
a : \(\dfrac{a^2+bc}{b^2+bd}=\dfrac{3a^2+c^2}{3b^2+d^2}\)
b: \(\dfrac{7a+19c}{7b+19d}=\dfrac{a-3c}{b-3d}\)
c : \(\dfrac{a^3+c^3}{b^3+d^3}=\dfrac{4a^3-c^3}{4b^3-d^3}\)
help me
Cho:a/b=c/d .CMR:a+2b/a-2b=c+2d/c-2d
Cho \(\frac{a}{b}=\frac{c}{d}\) CMR :
A) (a + c ) . ( b - d ) = ( a -c ) . ( b + d )
b) (2a + 3c ) .( 2b - 3d ) = ( 2a - 3c ) . ( 2b + 3d )
CMR :\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{5a+3b}{5a-3b}=\frac{2c+3d}{2c-3d}\)