\(\Leftrightarrow\dfrac{2}{\sin2x}=2\)
\(\Leftrightarrow\sin2x=1\)
\(\Leftrightarrow2x=\dfrac{\Pi}{2}+k2\Pi\)
hay \(x=\dfrac{\Pi}{4}+k\Pi\)
\(\Leftrightarrow\dfrac{2}{\sin2x}=2\)
\(\Leftrightarrow\sin2x=1\)
\(\Leftrightarrow2x=\dfrac{\Pi}{2}+k2\Pi\)
hay \(x=\dfrac{\Pi}{4}+k\Pi\)
\(tgx+cotgx=2\\ 3tg^4x+2tg^2x-1=0\)
\(sin^4x-cos^2x=1\\ \dfrac{3}{cos^2x}+2\sqrt{3}.tgx-6=0\)
cho tan = 2√2 và π < x < 3π/2
tìm cos x/2
Giải các phương trình sau:
1) sin2x + sin23x - 3cos22x = 0
2) sin22x + sin24x = sin26x
3) cos4x - 5sin4x = 1
4) sin24x + sin23x = cos22x +cos2x với x∈(0;π)
5) 4sin3x - 1 = 3 - √3cos3x
6)sin2x = cos22x + cos23x
Tính y' : y=(x^2+1).(x^2+2).(x^2+3)
Giải các phương trình sau:
1) 2cos2x + 6sinx.cosx + 6sin2x = 1
2) Cos2x – sinx.cosx – 2sin2x – 1 = 0
3) Cos2x + √3sinx.cosx – 1 = 0
4) 2√2(sinx + cosx).cosx = 3 + 2cos2x
rrút gọn E=cos^2-sin^2/sin^4+cos^4-xin^2 -1
Giải các phương trình lượng giác:
a) sin8x + cos8x = \(\dfrac{17}{16}\)cos22x
b) sin2x + sin22x + sin23x = 2
c) 2cos22x + cos2x = 4 sin22xcos2x
d) 2cos6x + tan3x = \(\dfrac{4}{5}\)
1) sin3x+sin2x+sinx=cos2x+cosx+1
2) cos2x + cos23x = sin22x