Viết số phức Z biết rằng số phức Z có phần thực bằng 2căn3 đồng thời có môđun bằng 10 .
Cho 2 số phức \(z_1=1-2i, z_2=1+mi\).Tìm m để số phức \(w=\frac{z_2}{z_1}+i\) là số thực
cho số phức z thỏa mãn (1+i)z+\(\overline{z}\)=i . tìm mô- đun của số phức w= 1+i+z
tìm mô đum của số phức z biết z^2 (1-i) +2(\(\overline{z}\))^2 (1+i) = 21-i
Chứng minh
\(\sqrt{\frac{7}{2}}\le\left|1+z\right|+\left|1-z+z^2\right|\le\sqrt[3]{\frac{7}{6}}\), với mọi \(z,\left|z\right|=1\)
Viết các số phức sau dưới dạng cực :
a)\(z_1=2i\)
b) \(z_2=-1\)
c) \(z_3=2\)
d) \(z_4=-3i\)
Và xác định Arg của chúng
Cho a,b,c là ba số phức khác 0 phân biệt với \(\left|a\right|=\left|b\right|=\left|c\right|\)
a) Chứng minh rằng nếu một nghiệm phương trình \(az^2+bz^2+c=0\) có môdun bằng 1 thì \(b^2=ac\)
b) Nếu mỗi phương trình
\(az^2+bz+c=0,bz^2+cz+a=0\) có một nghiệm có Môdun bằng 1 thì \(\left|a-b\right|=\left|b-c\right|=\left|c-a\right|\)
1) Cho \(z_1,...,z_6\) là nghiệm của \(z^6+2016z^5+2017z^4+2018z^3+2017z^2+2016z+1=0.\) Tính \(T=\left(z_1^2+1\right)\left(z_2^2+1\right)\left(z_3^2+1\right)\left(z_4^2+1\right)\left(z_5^2+1\right)\left(z_6^2+1\right)\)
2) số phức z=a+ib có |z|=1. Đặt \(a_0\) là phần thực của \(z^3-2z+\overline{z}.\) Tính giá trị nhỏ nhất của \(\dfrac{a_0+1}{a}\)
Câu 23 đề 005
Tính tổng S cua các phần thực của ất cả các số phức z thỏa mãn điều kiện \(\overline{z}=\sqrt{3}z^2\)
1/27x^6+27x^2-108=0