Cho tam giác ABC chứng minh:
a)\(sin\frac{A}{2}=cos\frac{B}{2}.cos\frac{C}{2}-sin\frac{B}{2}sin\frac{C}{2}\)
b)\(\frac{tan^2A-tan^2B}{1-tan^2A.tan^2B}=-tan\left(A-B\right).tanC\)
c) cotA.cotB + cotB.cotC+cotC.cotA=1
chứng minh:
a) \(\frac{cos\left(a-b\right)}{sin\left(a+b\right)}=\frac{cota.cotb+1}{cota.cotb-1}\)
b) sin(a+b).sin(a-b)=\(sin^2a-sin^2b=cos^2a-cos^2b\)
c) cos(a+b).cos(a-b)=\(cos^2a-sin^2b=cos^2b-sin^2a\)
tam giác này là tam giác gì ? Biết:
\(tan^2A+tan^2B=2.tan^2\dfrac{A+B}{2}\)
Tính sin 2a , cos 2a , tan 2a, biết \(cos a = \dfrac{-5}{13} , ( π < a < \dfrac{3π}{2}) \)
Chứng minh ràng trong tam giác ABC sin (A + 2B)/2 = cos((C - B)/2)
Chứng minh đẳng thức sau : Tan²x - sin²x= tan²x .sin²x
tính biểu thức y=\(\frac{cos^4a+sin^2a-cos^2a}{sin^4a+cos^2a-sin^2a}\)
cm các đẳng thức:
a) \(\frac{1+\sin^2\alpha}{1-\sin^2\alpha}=1+2\tan^2\alpha\)
b) \(\frac{\cos\alpha}{1+\sin\alpha}+\tan\alpha=\frac{1}{\cos\alpha}\)
c) \(\frac{\sin\alpha}{1+\cos\alpha}+\frac{1+\cos\alpha}{\sin\alpha}=\frac{2}{\sin\alpha}\)
Tinh cac gia tri bieu thuc sau:
A= (cota+tana)/(cota-tana) voi sina=3/5
B= (sin^2a-cos^2a)/(sin^2a-3cos^2a) voi cota=-1/3
C1=sin^2a+2cos^2a va C2= sin^4a-cos^4a voi tana=-2
Ai giup minh voii. Minh cam on nhieuu!