Cho tam giác ABC nhọn, AB < AC nội tiếp đường tròn (O). Các đường cao BD và CE của tam giác ABC cắt nhau tại H. Gọi K là giao điểm của DE và CB.
a) CMR: Tứ giác BCDE nội tiếp
b) C/m : KB.KC = KE.KD
c) Gọi M là trung điểm của BC, AK cắt đường tròn (O) tại điểm thứ 2 là N. C/m : 3 điểm M, H, N thẳng hàng
Cho tam giác ABC có 2 đường cao BD và CE cắt nhau tại H.Gọi (O) là đường tròn đi qua 4 điểm A,D,H,E và M là trung điểm BC.Chứng minh ME là tiếp tuyến (O)
Cho tam giác ABC nhọn nội tiếp đường tròn (O). Các đường cao BD,CE cắt nhau tại H. DE cắt BC tại F. Gọi K là giao điểm của AF với (O),N là giao điểm của KH a) Chứng minh tứ giá BEDC nội tiếp. Xác định tâm M của đường tròn ngoại tiếp tứ giác BEDC b ) Chứng minh góc FKE= góc FDA c ) Chứng minh AN là đường kính của đường tròn tâm O từ đó suy ra FH vuông góc với AM
cho tam giác ABC nhọn nội tiếp đường tròn (O;R) , 2 đường cao BE và CF của tam giác ABC cắt nhau tại H . đường thẳng AH cắt BD tại D và cắt (O;R) tại điểm M
a, chứng minh BC là p/g góc EMB
b, gọi I là tâm đường tròn ngoại tiếp tứ giác AEHF . chứng minh IE là tiếp tuyến của đường tròn ngoại tiếp tam giác BCE
c, khi 2 điểm B,C cố định và điểm A di động trên (O;R) nhứng vẫn thỏa mãn tam giác ABC nhọn . chứng minh OA vuông góc với EF . xác định vị trí A để tổng DE+EF+FD đtặ giá trị nhỏ nhất
Cho tam giác ABC có 3 góc nhọn nội tiếp (O;R) , 2 đường cao BD và CE cắt nhau tại H, gọi K là giao điểm của AO với (O;R)
1) Chứng minh: tứ giác BEDC nội tiếp
2) Chứng minh: góc ABC= góc ADE
3) Gọi M là trung điểm của BC. Chứng minh: 3 điểm H, M, K thẳng hàng
4) Giả sử góc ACB = 60 độ. Chứng minh tam giác HOC cân
5) Khoảng cách từ A đến H gấp 2 lần khoảng cách từ O đến BC
6) Gọi G là trọng tâm của tam giác ABC. Chứng minh: 3 điểm H,G,O thẳng hàng và HG = 2GO
7) AH cắt (O) tại F. Chứng minh: H và F đối xứng nhau qua BC
8) Chứng minh: tứ giác BCKF là hình thang cân
9) Gọi P và Q theo thứ tự là giao điểm của BD và CE với (O). Chứng minh: PQ song song với DE
Giúp mình với T-T
Cho tam giác ABC có 2 đường cao BD và CE cắt nhau tại H.
a. Chứng minh 4 điểm A,D,H,E thuộc 1 đường tròn.
b. Gọi (O) là đường tròn đi qua 4 điểm A,D,H,E và M là trung điểm BC.Chứng minh ME là tiếp tuyến (O)
Cho tam giác ABC có 2 đường cao BD và CE cắt nhau tại H.
a. Chứng minh 4 điểm A,D,H,E thuộc 1 đường tròn.
b. Gọi (O) là đường tròn đi qua 4 điểm A,D,H,E và M là trung điểm BC.Chứng minh ME là tiếp tuyến (O)
Cho △ABC có ba góc nhọn nội tiếp đường tròn (O). Ba đường cao AK, BD, CE cắt nhau tại H.
a) cmr H là tâm dường tròn nội tiếp △DEK.
b) Gọi I,J lần lượt là trung điểm của DE và BC. CMR OA\(//\)IJ.
Cho tam giác ABC nhọn nội tiếp đường tròn ( O ), Đường cao AD, BE,CF cắt nhau tại H .AH ,BH, CH kéo dài cắt đường tròn tâm O lần lượt tại Q,P,R. M là trung điểm của BC, I là trung điểm của AH , EF cắt AH tại K . Chứng minh :
a, Chứng minhTứ giác BFHD , CEHD , BFEC nội tiếp
b, Kẻ đường kinh AN , G là trọng tâm . Chứng minh H,G,O thẳng hàng
c, Chứng minh P,Q,R đối xứng với H qua AC,BC,AB
d, Chứng minh OA vuông góc với EF và tam giác ARQ cân
e, EF cắt đường tròn tại E1 và F1. Chứng minh AE1 , AF1 là tiếp tuyến của đường tròn ngoại tiếp tam giác CEE1 và tam giác BFF1
f, Chứng minh K là trực tâm của tam giác IBC
h,Chứng minh ME và MF là tiếp tuyến của đường tròn ngoại tiếp tam giác AEF