Ta có H là trực tâm tg ABC
\(\Rightarrow\widehat{EAH}=\widehat{ECB}\left(cùng.phụ.\widehat{ABC}\right)\left(1\right)\)
Mà \(OA=OE\Rightarrow\widehat{AEO}=\widehat{EAO}\left(2\right)\)
Vì EM là tt ứng cạnh huyền BC của tg EBC nên \(EM=MC\)
\(\Rightarrow\widehat{ECM}=\widehat{CEM}\left(3\right)\)
\(\left(1\right)\left(2\right)\left(3\right)\Rightarrow\widehat{AEO}=\widehat{CEM}\)
Mà \(\widehat{AEO}+\widehat{OEC}=\widehat{AEC}=90^0\Rightarrow\widehat{OEC}+\widehat{CEM}=90^0=\widehat{OEM}\)
Do đó \(OE\perp EM\) hay EM là tt của (O)