Cho tam giác ABC có góc B = 60 độ, BC = 8cm, AB + AC = 12cm. Tính AB, AC
(ko dùng sin,cos)
Cho tam giác ABC vuông tại A, AB<AC. Trung tuyến AM, \(\widehat{ACB}=x,\widehat{AMB}=y\)Chứng minh (sin x +cos x)2=1+sin y
MÌNH CẦN GẤP MỌI NGƯỜI GIÚP MÌNH NHA
Cho tam giác ABC có 3 góc nhọn với các đường cao AD,BE,CF cắt nhau tại H.
a, CMR: \(\Delta AEF\sim\Delta ABC\) ; \(\frac{S_{AEF}}{S_{ABC}}=\cos^2\alpha\)
b, CMR: \(S_{DEF}=\left(1-\cos^2A-\cos^2B-\cos^2C\right).S_{ABC}\)
c, Cho biết AH = k.HD. CMR: \(\tan B.\tan C=k+1\)
d, CMR: \(\frac{HA}{BC}+\frac{HB}{AC}+\frac{HC}{AB}\ge\sqrt{3}\)
Bài 4: Cho Δ ABC vuông tại A. Biết sin B =\(\frac{3}{4}\). Hãy tính tỉ số lượng giác của góc C
Bài 8: Cho cos α + sin α = 1,2. Hãy tính cos α . sin α
giải hộ mk nhé mn
Bài 1: Cho hình thang ABCD có 2 cạnh bên là AD và BC bằng nhau, đường chéo AC vuông góc với cạnh bên BC. Biết AD=5a và AC=12a
a) M=\(\frac{\sin B+\cos B}{\sin B-\cos B}\)
b) Tính chiều cao hình thang ABCD
Bài 2: Cho hàm số f - 8(x)= \(x^2-x+3\)
a) Tính f(3)
b) Tính f\(\left(\frac{\sqrt{x}-1}{\sqrt{x}+1}\right)\)
Bài 3: Rút gọn
I= \(\frac{2\cos^2\alpha-1}{\sin\alpha+\cos\alpha}\)
Bài 4: Cho tam giác ABC có BC=12cm, góc B=\(60^0\), góc C=\(40^0\)
a) Tính độ dài đường cao CH và cạnh AC
b) Tính diện tích tam giác ABC
Cho tam giác ABC (có ba góc nhọn) nội tiếp đường tròn (O) và tia phân giác của góc B cắt đường tròn tại M. Các đường cao BD và CK của ∆ABC cắt nhau tại H.
a) Chứng minh rằng tứ giác ADHK nội tiếp một đường tròn.
b) Chứng minh rằng OM là tia phân giác của góc AOC.
c) Gọi I là giao điểm của OM và AC. Tính tỉ số OI BH .
❤ 1/ Cho ΔABC có BC=14cm, đường cao AH=12cm, AC+AB=28cm
a) Tính AB,AC
b) Tính số đo góc B, góc C
❤ 2/ Cminh các hệ thức:
a)tan\(^2\)α+1=\(\frac{1}{cos^2\alpha}\)
b)cotg\(^2\alpha\)+1=\(\frac{1}{sin^2\alpha}\)
c)\(tan^2\alpha-sin^2\alpha=tan^2\alpha.sin^2\alpha\)
❤ 3/ a)Cho sin α=\(\frac{12}{13}\). Tính cos α,tan α,cotg α
b)Cho tan α=2/3. Tính sin α,cos α
❤ 4/Cminh các hệ thức sau không phụ thuộc vào α:
A=\(3\left(sin^4\text{a}+cos^4\text{α}\right)-2\left(sin^6\text{α}+cos^6\text{ α}\right)\)
B=\(sin^6\text{ α}+cos^6\text{ α}+3cos^2\text{ α}.sin^2\text{ α}\)
❤ 5/Không dùng máy tính, hãy tính:
A=sin\(^2\)10\(^o\)+\(sin^220^o\)+sin\(^2\)30\(^o\)+...+sin\(^2\)70\(^o\)+sin\(^2\)80\(^o\)
B=cos\(^212^o+cos^278^0+cos^21^o+cos^289^o\)
❤ 6/Cho ΔABC nhọn, CMinh: S\(_{ABC}\)=\(\frac{1}{2}\)AB.AC.sinA
❤ 7/Cho ΔABC có góc A=60,AB=3cm,AC=4cm, đường cao BH và CK.
a) Tính S\(_{\Delta ABC}\) , b) Tính \(_{\Delta AHK}\)
❤ 8/ Cho ΔABC có AB=AC=6cm,BC=4cm, đường cao BK
a) Tính các góc ΔABC(làm tìm đến phút)
b) Tính BK,AK,CK
❤ 1/ Cho ΔABC có BC=14cm, đường cao AH=12cm, AC+AB=28cm
a) Tính AB,AC
b) Tính số đo góc B, góc C
❤ 2/ Cminh các hệ thức:
a)tan\(^2\)α+1=\(\frac{1}{cos^2\alpha}\)
b)cotg\(^2\alpha\)+1=\(\frac{1}{sin^2\alpha}\)
c)\(tan^2\alpha-sin^2\alpha=tan^2\alpha.sin^2\alpha\)
❤ 3/ a)Cho sin α=\(\frac{12}{13}\). Tính cos α,tan α,cotg α
b)Cho tan α=2/3. Tính sin α,cos α
❤ 4/Cminh các hệ thức sau không phụ thuộc vào α:
A=\(3\left(sin^4\text{a}+cos^4\text{α}\right)-2\left(sin^6\text{α}+cos^6\text{ α}\right)\)
B=\(sin^6\text{ α}+cos^6\text{ α}+3cos^2\text{ α}.sin^2\text{ α}\)
❤ 5/Không dùng máy tính, hãy tính:
A=sin\(^2\)10\(^o\)+\(sin^220^o\)+sin\(^2\)30\(^o\)+...+sin\(^2\)70\(^o\)+sin\(^2\)80\(^o\)
B=cos\(^212^o+cos^278^0+cos^21^o+cos^289^o\)
❤ 6/Cho ΔABC nhọn, CMinh: S\(_{ABC}\)=\(\frac{1}{2}\)AB.AC.sinA
❤ 7/Cho ΔABC có góc A=60,AB=3cm,AC=4cm, đường cao BH và CK.
a) Tính S\(_{\Delta ABC}\) , b) Tính \(_{\Delta AHK}\)
❤ 8/ Cho ΔABC có AB=AC=6cm,BC=4cm, đường cao BK
a) Tính các góc ΔABC(làm tìm đến phút)
b) Tính BK,AK,CK
Cho tam giác ABC có 3 góc nhọn với đường cao AD,BE,CF cắt nhau tại H
a, Cmr : \(\Delta AEF\sim\Delta ABC;\frac{S_{AEF}}{S_{ABC}}=\cos^2A\)
b, Cmr : \(S_{DEF}=\left(1-\cos^2A-\cos^2B-\cos^2C\right).S_{ABC}\)
c, Cmr :\(\frac{HA}{BC}+\frac{HB}{AC}+\frac{HC}{AB}\ge3\)