Cho △ABC, kẻ AH ⊥ BC. Trên nửa mặt phẳng bờ AH chứa điểm B, dựng AD ⊥ AB sao cho AD = AB. Trên nửa mặt phẳng còn lại dựng AE ⊥ AC sao cho AE = AC. Nối D với E. AH cắt DE tại M. C/m M là trung điểm của DE.
Chỉ sử dụng các trường hợp bằng nhau của tam giác và các hệ quả với tam giác vuông (nếu có)
Cho tam giác nhọn ABC ; có đường cao AH. Trên nửa mặt phẳng bờ AC chứa điểm B vẽ tia AE vuông góc với AC và AE = AC . Trên nửa mặt phẳng bờ AB chứa điểm C vẽ tia AF vuông góc với AB và AF = AB.
a. CM: EB = FC
b.Gọi giao điểm của EF với AH là N. CM N là trung điểm của EF
Cho tam giác ABC, M là trung điểm của BC. Trên nửa mặt phẳng không chứa C có bờ AB, vẽ tia Ax vuông góc với AB, trên tia đó lấy điểm D sao cho AD=AB. Trên nửa mặt phẳng không chứa B có bờ AC, vẽ tia Ay vuông góc với AC, trên tia đó lấy điểm E sao cho AE=AC. Chứng minh rằng:
a) AM=DE/2
b)AM vuông góc DE
tam giác abc vuông tại a (ab<ac). tia đối ac lấy điểm d sao cho ad=ab, tia đối ab lấy điểm e sao cho ae=ac. đường cao ah của tam giác abc tia ah cắt cạnh de tại m a kẻ đường thẳng vuông góc tại k đường thẳng cắt bc tại n
chứng minh
a,bc=de
b,
Cho tam giác ABC vuông tại A có AB=16cm, AC=12cm. a) tính BC. b) vẽ AH vuông góc với BC tại H, trên HB lấy E sao cho HE=HC. chứng minh AC=AE. c) Trên tia đối tia HA lấy D sao cho DH=AH. chứng minh ED vuông góc AB. d) chứng minh CH<AH
Bài 1: Cho △ABC, kẻ AH ⊥ BC (H \(\in\) BC) . Trên nửa mặt phẳng bờ AH chứa điểm B dựng AD ⊥ AB sao cho AD = AB. Trên nửa mặt phẳng còn lại dựng AE ⊥ AC sao cho AE = AC. Nối D với E, \(DE\cap AH=\left\{M\right\}\). C/m M là trung điểm của DE. (Lưu ý: Bài này không kẻ thêm hình, được phép nối các đường)
Bài 2: Tìm số tự nhiên n nhỏ nhất sao cho các phân số sau tối giản: \(\frac{7}{n+9};\frac{8}{n+10};...;\frac{31}{n+33}\)
Cho tam giác ABC, trên nửa mặt phẳng bờ AB không chứa C. Vẽ AD vuông góc với AB và AD=AB. Trên nửa mặt phẳng bờ AC không chứa điểm B. Vẽ AE vuông góc với AC và AE=AC. Vẽ AH vuông góc với BC. Đường thẳng AH cắt DE tại M. Vẽ DD' và EE' cùng vuông góc với AH. Chứng Minh :
a) DD'=EE'=AH
b) DM=ME
Cho tam giác ABC, trên nửa mặt phẳng bờ AB không chứa C. Vẽ AD vuông góc với AB và AD=AB. Trên nửa mặt phẳng bờ AC không chứa điểm B. Vẽ AE vuông góc với AC và AE=AC. Vẽ AH vuông góc với BC. Đường thẳng AH cắt DE tại M. Vẽ DD' và EE' cùng vuông góc với AH. Chứng Minh :
a) DD'=EE'=AH
b) DM=ME