Ta chứng minh công thức:
\(1+\dfrac{1}{n^2}+\dfrac{1}{\left(n+1\right)^2}=\left(1+\dfrac{1}{n}+\dfrac{1}{n+1}\right)^2\) bằng cách quy đồng biểu thức ở vế phải rồi áp dụng vào bài tập
Ta chứng minh công thức:
\(1+\dfrac{1}{n^2}+\dfrac{1}{\left(n+1\right)^2}=\left(1+\dfrac{1}{n}+\dfrac{1}{n+1}\right)^2\) bằng cách quy đồng biểu thức ở vế phải rồi áp dụng vào bài tập
rút gọn biểu thức A=\(\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+\dfrac{1}{\sqrt{3}+\sqrt{4}}+...+\dfrac{1}{\sqrt{99}+\sqrt{100}}\)
B=\(\dfrac{1}{\sqrt{1}-\sqrt{2}}-\dfrac{1}{\sqrt{2}-\sqrt{3}}+\dfrac{1}{\sqrt{3}-\sqrt{4}}-...-\dfrac{1}{\sqrt{24}-\sqrt{25}}\)
a rút gọn biểu thức: T=\(\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+\dfrac{1}{4\sqrt{3}+3\sqrt{4}}+...+\dfrac{1}{100\sqrt{99}+99\sqrt{100}}\)
b tìm số tự nhiên n thỏa mãn
\(\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+\dfrac{1}{4\sqrt{3}+3\sqrt{4}}+...+\dfrac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\dfrac{4}{5}\)
a) \(\dfrac{1}{7+4\sqrt{3}}+\dfrac{1}{7-4\sqrt{3}}\)
b) \(\dfrac{3}{\sqrt{2}-1}+\dfrac{\sqrt{6}+\sqrt{2}}{\sqrt{3}+1}\)
c) \(\dfrac{3}{\sqrt{5}-2}-\dfrac{3}{\sqrt{5}+2}\)
Bài 1 : Tính :
a) \(\dfrac{1}{5+2\sqrt{6}}-\dfrac{1}{5-2\sqrt{6}}\)
b) \(\sqrt{6+2\sqrt{5}}-\dfrac{\sqrt{15}-\sqrt{3}}{\sqrt{3}}\)
c) \(\dfrac{3\sqrt{2}-2\sqrt{3}}{\sqrt{3}-\sqrt{2}}:\dfrac{1}{\sqrt{16}}\)
d) \(\dfrac{3+2\sqrt{3}}{\sqrt{3}}+\dfrac{2+\sqrt{2}}{1+\sqrt{2}}-\dfrac{1}{2-\sqrt{3}}\)
e) \(\dfrac{4}{1+\sqrt{3}}-\dfrac{\sqrt{15}+\sqrt{3}}{1+\sqrt{5}}\)
f) \(\left(\dfrac{1}{2-\sqrt{5}}+\dfrac{2}{\sqrt{5}-\sqrt{3}}\right):\dfrac{1}{\sqrt{21-12\sqrt{3}}}\)
Bài 2 : Rút gọn :
a) \(\dfrac{a+b-2\sqrt{ab}}{\sqrt{a}-\sqrt{b}}:\dfrac{1}{\sqrt{a}+\sqrt{b}}\)
b) \(\left(\dfrac{\sqrt{a}}{2}-\dfrac{1}{2\sqrt{a}}\right).\left(\dfrac{a-\sqrt{a}}{\sqrt{a}+1}-\dfrac{a+\sqrt{a}}{\sqrt{a}-1}\right)\)
c) \(\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)
Rút gọn:
a)\(\dfrac{5\sqrt{2}-2\sqrt{5}}{\sqrt{5}-\sqrt{2}}+\dfrac{6}{2-\sqrt{10}}\)
b)\(\dfrac{6}{\sqrt{5}-1}+\dfrac{7}{1-\sqrt{3}}-\dfrac{2}{\sqrt{3}-\sqrt{5}}\)
c)\(\left(\dfrac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}+\dfrac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}\right)\div\dfrac{1}{\sqrt{7}-\sqrt{5}}\)
d)\(\sqrt{2}+\dfrac{1}{\sqrt{5+2\sqrt{6}}}+\dfrac{2}{\sqrt{8+2\sqrt{15}}}\)
e)\(\left(\dfrac{15}{\sqrt{6}+1}+\dfrac{4}{\sqrt{6}-2}-\dfrac{12}{3-\sqrt{6}}\right)\times\left(\sqrt{6}+11\right)\)
Lm nhanh giúp mk nhé, mk đang cần gấp!
rút gọn biểu thức
a) A=\(\dfrac{\sqrt{x}-3}{\sqrt{x-2}}-\dfrac{2\sqrt{x}-1}{\sqrt{x}-1}+\dfrac{x-2}{x-3\sqrt{x}+2}vớix\ge0,x\ne4,x\ne1\)
b)\(\left(\dfrac{x+2}{x\sqrt{x}-1}-\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right)\div\dfrac{\sqrt{x}-1}{2}vớix>0,x\ne1\)
Bài 1: Rút gọn biểu thức:
a) \(\left(5\sqrt{\dfrac{1}{5}}+\dfrac{1}{2}+\sqrt{20}-\dfrac{5}{4}\sqrt{\dfrac{4}{5}+\sqrt{5}}\right)\)
b) \(\dfrac{1}{3}\sqrt{48}+3\sqrt{75}-\sqrt{27}-10\sqrt{1\dfrac{1}{3}}\)
c) \(\dfrac{5\sqrt{7}-7\sqrt{5}+2\sqrt{70}}{\sqrt{35}}\)
d) \(\sqrt{\dfrac{3}{4}}+\sqrt{\dfrac{1}{3}}+\sqrt{\dfrac{1}{12}}\)
Bài 2: Giải các phương trình sau:
a) \(x^2+4x+5=2\sqrt{2x+3}\)
b) \(x^2+9x+20=2\sqrt{3x+10}\)
c) \(x^2+7x+14=2\sqrt{x+4}\)
d) \(4\sqrt{x+1}=x^2-5x+14\)
e) \(\sqrt{6-x}=3x-4\)
f) \(\sqrt{5x-9}=9-2x\)
Mọi người làm ơn giúp mình với. Mình đang cần gấp ạ. Cảm ơn mọi người rất nhiều
Tính:
a) \(2\sqrt{\dfrac{27}{4}}-\sqrt{\dfrac{48}{9}}-\dfrac{2}{5}\sqrt{\dfrac{75}{16}}\)
b) \(\left(1+\dfrac{5-\sqrt{5}}{1-\sqrt{5}}\right)\left(\dfrac{5+\sqrt{5}}{1+\sqrt{5}}+1\right)\)
c) \(3\sqrt{\dfrac{9}{8}}-\sqrt{\dfrac{49}{2}}+\sqrt{\dfrac{25}{18}}\)
d) \(\dfrac{1}{\sqrt{3}-\sqrt{2}}+\dfrac{1}{\sqrt{3}+\sqrt{2}}\)
Tính:
A=\(\dfrac{1}{5+2\sqrt{6}}-\dfrac{1}{5-2\sqrt{6}}\)
B=\(\dfrac{1}{\sqrt{3}+2}-\dfrac{1}{\sqrt{3}-2}\)
C=\(\dfrac{3}{\sqrt{3}}+\dfrac{2\sqrt{3}}{\sqrt{3}+1}\)
D=\(\dfrac{\sqrt{15}-\sqrt{12}}{\sqrt{5}-2}-\dfrac{1}{2-\sqrt{3}}\)