\(=\sqrt{9\cdot\left(-2\right)^2\cdot\left(3+4+8\sqrt{3}\right)}\)
\(=3\cdot2\cdot\sqrt{7+8\sqrt{3}}\)
\(=6\sqrt{8\sqrt{3}+7}\)
\(=\sqrt{9\cdot\left(-2\right)^2\cdot\left(3+4+8\sqrt{3}\right)}\)
\(=3\cdot2\cdot\sqrt{7+8\sqrt{3}}\)
\(=6\sqrt{8\sqrt{3}+7}\)
B1:tính :
a)\(\sqrt{4+2\cdot\sqrt{3}}-\sqrt{13-4\cdot\sqrt{3}}\)
b)\(\sqrt{14+4\cdot\sqrt{3}}-\sqrt{9-4\cdot\sqrt{2}}\)
B2; cmr :
a)\(\sqrt{x^2+2x+5}\ge2\)
b)\(\sqrt{x^2-4}+\sqrt{x-2}=0\)
Rút gọn
a)\(\sqrt{8+\sqrt{7}}-\sqrt{8-\sqrt{7}}\)
b)\(\sqrt{3-\sqrt{5}}\cdot\left(\sqrt{10}-\sqrt{2}\right)\cdot\left(8+\sqrt{5}\right)\)
bài 1 tính
a, \(\sqrt{\left(1-\sqrt{5}\right)^2}+1\)
b, \(\sqrt{3+2\cdot\sqrt{2}}-2\)
c, \(\sqrt{b^2-b+\dfrac{1}{4}}-\left(2b-\dfrac{1}{2}\right)\left(vsb\ge\dfrac{1}{2}\right)\)
d, \(\sqrt{7+2\cdot\sqrt{10}}\)
e. \(\sqrt{11-4\cdot\sqrt{7}}\)
f, \(\sqrt{x-2\cdot\sqrt{x-1}}\)
g, \(3x+\sqrt{x^2-2x+1}\)
h, \(\sqrt{y+2\sqrt{y^2-2y+1}}\) (voi y>1)
i, \(\sqrt{17-2\sqrt{32}}+\sqrt{17+2\sqrt{32}}\)
k, \(\sqrt{5+2\sqrt{6}}-\sqrt{5-2\sqrt{6}}\)
Tính:
\(\left(\dfrac{3\sqrt{3}-2\sqrt{2}}{\sqrt{3}-\sqrt{2}}+\dfrac{3\sqrt{2}+2\sqrt{3}}{\sqrt{3}+\sqrt{2}}\right)\cdot\dfrac{5-2\sqrt{6}}{4}\)
Câu1: Rút gọn
\(a,x+\sqrt{\left(x+2\right)^2}\cdot\left(x-2\right)\\ b,\sqrt{m^2-6m+9-2m}\left(x>3\right)\\ c,1+\sqrt{\frac{\left(x-1\right)^2}{x-1}}\\ d,\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}\)
Câu 2: So sánh
\(a,3và\sqrt{5}\\ \\ \\ b,2\sqrt{2}và3\sqrt{2}\\ \\ \\ c,-4\sqrt{5}và-6\sqrt{6}\\ \\ \\ d,2\sqrt{3}-5và\sqrt{3}-4\\ \\ \\e,A=\sqrt{2006}-\sqrt{2005}và\\ B=\sqrt{2005}-\sqrt{2004}\)
Câu 3: Rút gọn
\(a,\sqrt{16-2\sqrt{55}}\\ \\ \\ \\ \\ \\ \\ \\ \\ b,\sqrt{14-6\sqrt{5}}\\ \\ \\ \\ \\ \\ \\ \\ \\ c,\sqrt{36+12\sqrt{5}}\\ \\ \\ \\ \\ \\ \\ \\ \\ d,\sqrt{29+12\sqrt{5}}\)
Câu4: Tìm đkxđ
\(a,\sqrt{x^2-9}\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ b,\sqrt{x^2-3x+2}\)
\(c,\frac{\sqrt{x+3}}{\sqrt{5-x}}\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ d,\sqrt{\frac{x+3}{5-x}}\)
a,\(\left(2\sqrt{3+\sqrt{5}}\right)\cdot\sqrt{3-\sqrt{60}}\)
Rút gọn biểu thức:
\(A=\sqrt{\left(2-\sqrt{7}\right)^2}+\left(\sqrt{7}-1\right)^2\)
\(B=3\sqrt{\left(1,5\right)^2}-4\sqrt{\left(3-\sqrt{2}\right)^2}\)
Rút gọn :
a) \(\left(\sqrt{6}+\sqrt{2}\right).\left(\sqrt{3}-2\right)\left(\sqrt{2+\sqrt{3}}\right)\)
b) \(\sqrt{2}.\left(\sqrt{2-\sqrt{3}}\right).\left(\sqrt{3}+1\right)\)
c) \(\left(\sqrt{10}-\sqrt{6}\right).\left(\sqrt{4-\sqrt{15}}\right)\)
d)\(\left(\sqrt{3}-\sqrt{12}\right).\left(\sqrt{5+2\sqrt{6}}\right)\)
e) \(\sqrt{2-\sqrt{3}}.\left(\sqrt{6}-\sqrt{2}\right).\left(2+\sqrt{3}\right)\)
f) \(\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)
1A)rút gọn biểu thức
a)\(\sqrt{\left(4-\sqrt{15}\right)^2}+\sqrt{15}\)
b)\(\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(1-\sqrt{3}\right)^2}\)
1B)thực hiện phép tính
a)\(\sqrt{\left(\sqrt[2]{2}-3\right)^2}+\sqrt[2]{2}\)
b)\(\sqrt{\left(\sqrt{10}-3\right)^2}+\sqrt{\left(\sqrt{10}-4\right)^2}\)