\(\sqrt{6}+\sqrt{6}+\sqrt{6}+...+\sqrt{6}=n\sqrt{6}\)(n là số số hạng của tổng các căn)
\(\sqrt{6}+\sqrt{6}+\sqrt{6}+...+\sqrt{6}=n\sqrt{6}\)(n là số số hạng của tổng các căn)
Tính:
\(\sqrt{\sqrt{2\sqrt{6}+6+2\sqrt{2}+2\sqrt{3}}-5+2\sqrt{6}}\)
a,\(\dfrac{1}{\sqrt{7-\sqrt{24}+1}}\)-\(\dfrac{1}{\sqrt{7+\sqrt{24}-1}}\)
b,\(\dfrac{1}{3-\sqrt{7}}\)-\(\dfrac{1}{3+\sqrt{7}}\)
c,\(\sqrt{21+6\sqrt{6}}\)+\(\sqrt{21-6\sqrt{6}}\)
\(A=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2+4\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\)
a) Rút gọn A
b)Cho \(a=\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}\)và \(b=\sqrt{24}\). Tính A
Giải: \(\sqrt{x+3+4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=5\)
Giải PT \(\sqrt{2x-3}-\sqrt{x}=2x-6\)
Tìm x:a, \(\sqrt{x-94}+\sqrt{96-x}=x^2-190x+9027\)
b, \(\sqrt[3]{x-2}+\sqrt{x+1}=3\)
c, \(\dfrac{\sqrt[3]{7-x}-\sqrt[3]{x-5}}{\sqrt[3]{7-x}+\sqrt[3]{x-5}}=6-x\)
cho a,b,c > 0 thỏa mãn a + b + c = 6. Chứng minh:
\(\dfrac{a}{\sqrt{b^3+1}}+\dfrac{b}{\sqrt{c^3+1}}+\dfrac{c}{\sqrt{a^3+1}}\ge2\)
Cho số M= 1+\(\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+..+\dfrac{1}{\sqrt{10^6}}\)
Chứng minh rằng 1998<M<1999
Rút gọn biểu thức sau
D = \(\left(\frac{5}{x-\sqrt{x}-6}+\frac{1}{\sqrt{x}+2}\right):\frac{1}{\sqrt{x}-3}\)
E = \(\left(\frac{1}{a-\sqrt{a}}+\frac{1}{\sqrt{a}-1}\right):\frac{\sqrt{a}+1}{a-2\sqrt{a}+1}\)