Chương 4: BẤT ĐẲNG THỨC, BẤT PHƯƠNG TRÌNH

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Thùy Thùy

\(\sqrt{4x^2+5x+1}-\sqrt{4x^2-4x+4}=9x-3\)

\(\left(\sqrt{x+2}-\sqrt{x-1}\right)\left(\sqrt{2-x}+1\right)=1\)

Hoàng Lê Bảo Ngọc
4 tháng 7 2016 lúc 19:52

\(\left(\sqrt{x+2}-\sqrt{x-1}\right)\left(\sqrt{2-x}+1\right)-1=0\) (ĐKXĐ : \(1\le x\le2\) )

\(\Leftrightarrow\sqrt{\left(2-x\right)\left(2+x\right)}+\sqrt{x+2}-\sqrt{\left(2-x\right)\left(x-1\right)}-\sqrt{x-1}-1=0\)

\(\Leftrightarrow\sqrt{\left(2-x\right)\left(2+x\right)}-\left(2-\sqrt{x+2}\right)-\sqrt{\left(2-x\right)\left(x-1\right)}+\left(1-\sqrt{x-1}\right)=0\)

\(\Leftrightarrow\sqrt{\left(2-x\right)\left(2+x\right)}-\frac{2-x}{\sqrt{x+2}+2}-\sqrt{\left(2-x\right)\left(x-1\right)}+\frac{2-x}{\sqrt{x-1}+1}=0\)

\(\Leftrightarrow\sqrt{2-x}\left(\sqrt{x+2}-\frac{\sqrt{2-x}}{\sqrt{x+2}+2}-\sqrt{x-1}+\frac{\sqrt{2-x}}{\sqrt{x-1}+1}\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}\sqrt{x-2}=0\\\sqrt{x+2}-\frac{\sqrt{2-x}}{\sqrt{x+2}+2}-\sqrt{x-1}+\frac{\sqrt{2-x}}{\sqrt{x-1}+1}=0\end{array}\right.\)

Với \(\sqrt{x-2}=0\) => x = 2 (TMĐK)

Với \(\sqrt{x+2}-\frac{\sqrt{2-x}}{\sqrt{x+2}+2}-\sqrt{x-1}+\frac{\sqrt{2-x}}{\sqrt{x-1}+1}=0\) , từ điều kiện \(1\le x\le2\) ta luôn có : \(\sqrt{x+2}-\frac{\sqrt{2-x}}{\sqrt{x+2}+2}-\sqrt{x-1}+\frac{\sqrt{2-x}}{\sqrt{x-1}+1}>0\)

Vậy phương trình có nghiệm : x = 2

Hoàng Lê Bảo Ngọc
4 tháng 7 2016 lúc 19:18

\(\sqrt{4x^2+5x+1}-\sqrt{4x^2-4x+4}=9x-3\)(ĐKXĐ : \(x\le-1\)hoặc \(x\ge-\frac{1}{4}\))

\(\Leftrightarrow\left(\sqrt{4x^2+5x+1}-2\sqrt{7}x\right)-\left(\sqrt{4x^2-4x+4}-2\sqrt{7}x\right)-\left(9x-3\right)=0\)

\(\Leftrightarrow\frac{\left(4x^2+5x+1\right)-28x^2}{\sqrt{4x^2+5x+1}+2\sqrt{7}x}-\frac{\left(4x^2-4x+4\right)-28x^2}{\sqrt{4x^2-4x+4}+2\sqrt{7}x}-3\left(3x-1\right)=0\)

\(\Leftrightarrow\frac{-24x^2+5x+1}{\sqrt{4x^2+5x+1}+2\sqrt{7}x}+\frac{24x^2+4x-4}{\sqrt{4x^2-4x+4}+2\sqrt{7}x}-3\left(3x-1\right)=0\)

\(\Leftrightarrow\frac{-\left(3x-1\right)\left(8x+1\right)}{\sqrt{4x^2+5x+1}+2\sqrt{7}x}+\frac{4\left(3x-1\right)\left(2x+1\right)}{\sqrt{4x^2-4x+4}+2\sqrt{7}x}-3\left(3x-1\right)=0\)

\(\Leftrightarrow\left(3x-1\right)\left(\frac{8x+4}{\sqrt{4x^2-4x+4}+2\sqrt{7}x}-\frac{8x+1}{\sqrt{4x^2+5x+1}+2\sqrt{7}x}-3\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}3x-1=0\\\frac{8x+4}{\sqrt{4x^2-4x+4}+2\sqrt{7}x}-\frac{8x+1}{\sqrt{4x^2+5x+1}+2\sqrt{7}x}-3=0\end{array}\right.\)

Với 3x - 1 = 0 => x = \(\frac{1}{3}\) (TMĐK)

Với \(\frac{8x+4}{\sqrt{4x^2-4x+4}+2\sqrt{7}x}-\frac{8x+1}{\sqrt{4x^2+5x+1}+2\sqrt{7}x}-3=0\) , Từ điều kiện \(\left[\begin{array}{nghiempt}x\le-1\\x\ge-\frac{1}{4}\end{array}\right.\) ta luôn có : \(\frac{8x+4}{\sqrt{4x^2-4x+4}+2\sqrt{7}x}-\frac{8x+1}{\sqrt{4x^2+5x+1}+2\sqrt{7}x}-3>0\)

Vậy phương trình có nghiệm : \(x=\frac{1}{3}\)


Các câu hỏi tương tự
Kimian Hajan Ruventaren
Xem chi tiết
Nguyễn Khánh Linh
Xem chi tiết
Nguyễn Thị Hà Linh
Xem chi tiết
Hoàng Hy
Xem chi tiết
Nguyễn Ngọc Trâm
Xem chi tiết
Nguyễn Lê Nhật Linh
Xem chi tiết
Tran Lam Phong
Xem chi tiết
Nguyễn Khánh Linh
Xem chi tiết
Đạt Kien
Xem chi tiết