\(\sqrt{1969}+\sqrt{1971}< 2\sqrt{1970}\)
So sánh:\(\sqrt{1969}+\sqrt{1971}\)và \(2\sqrt{1970}\)
Ko bt bn giả ra chưa nhưng mk sẽ giải thử:
Áp dụng bất đẳng thức Bu-nhi- a -cốp- xki ta có:
\(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)thay vào đề bài đc:
\(\left(\sqrt{1969}+\sqrt{1971}\right)^2\le2\left(1969+1971\right)=\)
\(2.2.1970=4.1970\)\(=\left(2\sqrt{1970}\right)^2\) (1)
Hiển nhiên ko có dấu "=" vì \(a\ne b\) \(\left(\sqrt{1969}< \sqrt{1971}\right)\) (2)
(1); (2) \(\Rightarrow\left(2\sqrt{1970}\right)^2>\left(\sqrt{1969}+\sqrt{1971}\right)^2\)
\(\Rightarrow\sqrt{1969}+\sqrt{1971}< 2\sqrt{1970}\)(đpcm)