a,\(\dfrac{\sqrt{3}}{\sqrt{\sqrt{3}+1-1}}\)-\(\dfrac{\sqrt{3}}{\sqrt{\sqrt{3}+1+1}}\)
b,\(\dfrac{1}{\sqrt{7-\sqrt{24}+1}}\)-\(\dfrac{1}{\sqrt{7+\sqrt{24}+1}}\)
Tính tổng: \(A=\dfrac{1}{2+2\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+\dfrac{1}{4\sqrt{3+3\sqrt{4}}}+...+\dfrac{1}{225\sqrt{224}+224\sqrt{255}}\)
Rút gọn:
\(B=2\sqrt{18}-4\sqrt{32}+\sqrt{72}+3\sqrt{8}\)
\(C=\dfrac{\sqrt{8-2\sqrt{15}}-\sqrt{5}}{\dfrac{1}{\sqrt{3}-2}-\dfrac{1}{\sqrt{3}+2}}\)
Tìm điều kiện xác định và rút gọn các biểu thức sau :
a/ \(A=\left(\dfrac{\sqrt{3}}{x^2+x\sqrt{3}+3}+\dfrac{3}{x^3-\sqrt{27}}\right).\left(\dfrac{x}{\sqrt{3}}+\dfrac{\sqrt{3}}{x}+1\right)\)
b/ \(B=\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}+x+1\)
c/ \(C=\left(\dfrac{2+\sqrt{x}}{x+2\sqrt{x}+1}-\dfrac{\sqrt{x}-2}{x-1}\right).\dfrac{x\sqrt{x}+x-\sqrt{x}-1}{\sqrt{x}}\)
d/ \(\left[\dfrac{1}{x-1}+\dfrac{x^2+1-2x}{\left(x-1\right)^2+3x}-\dfrac{1+4x-2x^2}{x^3-1}\right]:\dfrac{2}{x^2+1}\)
Tìm x:a, \(\sqrt{x-94}+\sqrt{96-x}=x^2-190x+9027\)
b, \(\sqrt[3]{x-2}+\sqrt{x+1}=3\)
c, \(\dfrac{\sqrt[3]{7-x}-\sqrt[3]{x-5}}{\sqrt[3]{7-x}+\sqrt[3]{x-5}}=6-x\)
Thu gọn:
a) \(\sqrt{7-4\sqrt{3}}-\sqrt{7+4\sqrt{3}}\)
b) \(\left(\frac{\sqrt{x}+1}{x-4}-\frac{\sqrt{x}-1}{x+4\sqrt{x}+4}\right)\cdot\frac{x\sqrt{x}+2x-4\sqrt{x}-8}{\sqrt{x}}\)
Rút gọn: \(\dfrac{3+\sqrt{5}}{\sqrt{10}+\sqrt{3+\sqrt{5}}}-\dfrac{3-\sqrt{5}}{\sqrt{10}+\sqrt{3-\sqrt{5}}}\)
Rút gọn
P = \(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}+1}{\sqrt{x}-3}+\frac{3+7\sqrt{x}}{9-x}\)
rút gọn B=\(\dfrac{\sqrt{1-\sqrt{1-x^2}}.\left(\sqrt{\left(1+x\right)^3}+\sqrt{\left(1-x\right)^3}\right)}{2-\sqrt{1-x^2}}\)