a. Nếu \(m>1\) thì \(m^2>m\) (nhân cả hai vế với số dương m)
Vậy nếu \(m>1\) thì \(m^2>m\)
b. Nếu m dương nhưng m<1 thì m2<m
a. Nếu \(m>1\) thì \(m^2>m\) (nhân cả hai vế với số dương m)
Vậy nếu \(m>1\) thì \(m^2>m\)
b. Nếu m dương nhưng m<1 thì m2<m
Cho a,b,c là 3 số dương thỏa mãn a+b+c=1. CMR
a,1/b+c + 1/c+a + 1/a+b >4
b, b+2b+c>= 4(1-a)(1-b)(1-c)
1) Cho m>0 và m<1. Chứng minh m2<m
2) Cho a>b>0. Chứng minh a2-b2>0
Bài 4: Chứng tỏ các bất đẳng thức sau luôn đúng:
a)(m-2\(^{ }\))\(^2\) > m(m-4)
b)2mn ≤ m\(^2\) + n\(^2\)
c)m\(^2\) -m ≤ 50m\(^2\) -15m+1
d)\(\frac{m}{m^2+1}\)≤\(\frac{1}{2}\)
e)\(\frac{ab}{c}\)+\(\frac{bc}{a}\)+\(\frac{ca}{b}\)≥a+b+c (a>0; b>0; c>0)
Cho \(m< n\), hãy so sánh "
a) \(5m\) và \(5n\)
b) \(-3m\) và \(-3n\)
1.Cho các số dương a,b. Chứng minh rằng \(\dfrac{1}{a}\)+\(\dfrac{1}{b}\)≥\(\dfrac{4}{a+b}\)
2. Cho a,b,c là các số thực không âm. Chứng minh rằng (a+b)(b+c)(c+a)≥8abc
Tìm giá trị nhỏ nhất của A = \(x^2+\dfrac{1}{x^3}\)
Cho a, b là hai số cùng dấu
Tìm giá trị nhỏ nhất của biểu thức P = ( a + b )\(\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\)
1) Cho m>2, chứng minh m2-2m>0.
Cho a<0; b<0 và a>b. Chứng minh 1/a<1/b
Suy ra kết quả tương tự a≥b>0
Cho a, b , c, d dương. C/m: a > b; c > d => a + b > c + d.