\(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\ge\frac{9}{2\left(a+b+c\right)}=\frac{9}{2}>4\)
Câu b chắc là \(a+2b+c\ge4\left(1-a\right)\left(1-b\right)\left(1-c\right)\)
BĐT tương đương:
\(a+2b+c\ge4\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Ta có:
\(VP=4\left(a+b\right)\left(b+c\right)\left(c+a\right)\le\left(a+2b+c\right)^2\left(c+a\right)\)
\(VP\le\left(a+2b+c\right)\left(a+2b+c\right)\left(c+a\right)\le\frac{1}{4}\left(a+2b+c\right)\left(a+2b+c+c+a\right)^2\)
\(\Rightarrow VP\le\frac{1}{4}\left(a+2b+c\right)\left(2a+2b+2c\right)^2=a+2b+c\) (đpcm)
Dấu "=" không xảy ra