Đặt \(A=\frac{2^{2015}+1}{2^{2012}+1}\) và \(B=\frac{2^{2017}+1}{2^{2014}+1}\)
Ta có: \(\frac{1}{8A}=2^{2015}+\frac{1}{2^{2015}}+8=2^{2015}+8-\frac{7}{2^{2015}}+8=1-\frac{7}{2^{2015}}+8\)
\(\frac{1}{8B}=2^{2017}+\frac{1}{2^{2017}}+8=2^{2017}+8-\frac{7}{2^{2017}}+8=1-\frac{7}{2^{2017}}+8\)
Ta có: \(7^{2015}< 7^{2017}\)
\(\Rightarrow\frac{7}{2^{2015}}>\frac{7}{2^{2017}}\)
\(\Rightarrow1-\frac{7}{2^{2015}}+8< 1-\frac{7}{2^{2017}}+8\)
hay A<B
hay \(\frac{2^{2015}+1}{2^{2012}+1}\)<\(\frac{2^{2017}+1}{2^{2014}+1}\)