\(\dfrac{1}{1+\dfrac{2010}{2011}+\dfrac{2010}{2012}}+\dfrac{1}{1+\dfrac{2011}{2010}+\dfrac{2011}{2012}}+\dfrac{1}{1+\dfrac{2012}{2011}+\dfrac{2012}{2010}}\) và \(\dfrac{2016}{2017}\)
Cho A=\(\dfrac{2010^{2011+1}}{2010^{2012+1}}\)và B=\(\dfrac{2010^{2010+1}}{2010^{2011+1}}\)
so sánh A và B
so sánh
a)\(A=\dfrac{-2015}{2015.2016}\) và \(B=\dfrac{-2014}{2014.2015}\) b)A = \(\dfrac{10^{2009}+1}{10^{2010}+1}\) và \(B=\dfrac{10^{2010}+1}{10^{2011}+1}\)
Không tính giá trị của mỗi biểu thức, hãy so sánh hai biểu thức \(\dfrac{2011\cdot2012-1}{2011\cdot2012}\) và \(\dfrac{2012\cdot2013-1}{2012\cdot2013}\)
So sánh :
A = 2009/2010 + 2010/2011 + 2011/2012
B = 2009 + 2010 + 2011/2010 + 2011 + 2012
mấy bạn ơi giúp mình câu này với
a)\(\dfrac{23}{55}\) và \(\dfrac{1978}{2010}\) b) \(\dfrac{2003.2004-1}{2003.2004}\) và \(\dfrac{2004.2005-1}{2004.2005}\)
c)\(\dfrac{a}{b}\) và \(\dfrac{a+m}{b+m}\) với a > b >0
d) \(\dfrac{a}{b}\) và \(\dfrac{a+m}{b+m}\) với a < b, b >0
So sánh tổng S= \(\dfrac{1}{2}\)+\(\dfrac{2}{2^2}\)+\(\dfrac{3}{2^3}\)+...+\(\dfrac{n}{2^n}\)+...+\(\dfrac{2017}{2^{2017}}\)với 2 (\(n\in N\)*)
so sánh
A = \(\dfrac{1}{2}.\dfrac{3}{4}.\dfrac{5}{6}...\dfrac{99}{100}\)và \(B=\dfrac{1}{10}\)
Cho A= \(\dfrac{4^{15}+1}{4^{17}+1}\) và \(\dfrac{4^{12}+1}{4^{14}+1}\). So sánh A với B.