d: \(\left(2\sqrt{3}+1\right)^2=13+4\sqrt{3}\)
\(\left(3\sqrt{2}\right)^2=18=13+5\)
mà \(4\sqrt{3}>5\)
nên \(2\sqrt{3}+1>3\sqrt{2}\)
e: \(\left(3+\sqrt{5}\right)^2=14+6\sqrt{5}\)
\(\left(\sqrt{7}+1\right)^2=8+2\sqrt{7}\)
mà 14>8; \(6\sqrt{5}>2\sqrt{7}\)
nên \(3+\sqrt{5}>\sqrt{7}+1\)
f: \(\left(\sqrt{5}+\sqrt{7}\right)^2=12+2\sqrt{35}\)
\(\left(2\sqrt{6}\right)^2=24=12+12\)
mà \(2\sqrt{35}< 12\)
nên \(\sqrt{5}+\sqrt{7}< 2\sqrt{6}\)