Đề sai chỗ 2001/2001 phải là 2001/2002
\(A=\dfrac{2000}{2001}+\dfrac{2001}{2002}>\dfrac{2000}{2002}+\dfrac{2001}{2002}=\dfrac{4001}{2002}>1\)
B=\(\dfrac{2000+2001}{2001+2002}=\dfrac{4001}{4003}< 1\)
=>A>B
Ta có :
B = \(\dfrac{2000+2001}{2001+2002}\) \(=\dfrac{2000}{2001+2002}+\dfrac{2001}{2001+2002}\)
Vì \(\dfrac{2000}{2001}\) > \(\dfrac{2000}{2001+2002}\)
\(\dfrac{2001}{2002}\) \(>\dfrac{2001}{2001+2002}\)
Nên \(\dfrac{2000}{2001}+\dfrac{2001}{2002}\) \(>\dfrac{2000+2001}{2001+2002}\)
Vậy A > B