a,\(243^5=3^{5^5}=3^{5.5}=3^{25}\)
\(3.27^8=3.3^{3^8}=3.3^{3.8}=3.3^{24}=3^{25}\)
=>\(243^5=3.27^8\)
b,\(15^{12}=\left(3.5\right)^{12}=3^{12}.5^{12}\)
\(81^3.125^5=3^{4^3}.5^{3^5}=3^{4.3}.5^{3.5}=3^{12}.5^{15}\)
=>\(15^{12}< 81^3.125^5\)
c,\(78^{12}-78^{11}=78^{11}.\left(78-1\right)\)
\(78^{11}-78^{10}=78^{10}.\left(78-1\right)\)
=>\(78^{12}-78^{11}>78^{11}-78^{10}\)
Mình chỉ làm thế thôi lí luận và kết luận bạn tự làm nhé
a,2435=(35)5=325
3.278=3.(33)8=3.324=325
Vì 325=325 nên 2435=3.278
b,813.1255=(34)3.(53)5
=312.515
=1512.53
=>1512<813.1255
c,7812-7811=7811(78-1)=77.7811
7811-7810=7810(78-1)=77.7810
Vì 77.7810<77.7811=>7812-7811>781`1-7810