\(\dfrac{a}{b}< 1\Leftrightarrow\dfrac{a+m}{b+m}\left(m\in N\right)\)
\(A=\dfrac{10^{49}+1}{10^{51}+1}< 1\)
\(A< \dfrac{10^{49}+1+9}{10^{51}+1+9}< \dfrac{10^{49}+10}{10^{51}+10}< \dfrac{10\left(10^{48}+1\right)}{10\left(10^{50}+1\right)}< \dfrac{10^{48}+1}{10^{50}+1}=B\)
\(\Leftrightarrow A< B\)
Ta có:
\(10^2A=\dfrac{10^{51}+1+99}{10^{51}+1}=1+\dfrac{99}{10^{51}+1}\)
\(10^2B=\dfrac{10^{50}+1+99}{10^{50}+1}=1+\dfrac{99}{10^{50}+1}\)
Vì \(1=1\) mà \(\dfrac{99}{10^{51}+1}< \dfrac{99}{10^{50}+1}\) (do \(99=99\); \(10^{51}+1>10^{50}+1\))
nên \(10^2A< 10^2B\)
\(\Rightarrow A< B\)
Vậy \(A< B\)
Chúc bạn học tốt!!!
Ta có :
* 100A = 102A = \(10^2\dfrac{\left(10^{49}+1\right)}{10^{51}+1}\) = \(\dfrac{10^{51}+100}{10^{51}+1}=\dfrac{10^{51}+1}{10^{51}+1}+\dfrac{99}{10^{51}+1}\) = \(1+\dfrac{99}{10^{51}+1}\)
* 100B = 102B = \(10^2\dfrac{\left(10^{48}+1\right)}{10^{50}+1}=\dfrac{10^{50}+100}{10^{50}+1}=\dfrac{10^{50}+1}{10^{50}+1}+\dfrac{99}{10^{50}+1}\)
= \(1+\dfrac{99}{10^{50}+1}\)
Vì \(\dfrac{99}{10^{50}+1}>\dfrac{99}{10^{51}+1}\Rightarrow1+\dfrac{99}{10^{50}+1}>1+\dfrac{99}{10^{51}+1}\)
Hay 100B > 100A => B>A